
Multi-Agent Oriented Programming
– Agent-Oriented Programming –
The Jason Agent Programming Language

Olivier Boissier

ENS Mines Saint-Etienne

http://www.emse.fr/

~

boissier

Web Intelligence Master — Nov 2012

Thanks to Jomi F. Hübner, UFSC/DAS Brazil

and Rafael H. Bordini PUCRS Brazil for providing most of the slides

Outline

1 Origins and Fundamentals

2 Features

3 Use of Jason within a Multi-Agent System

4 Current Shortfalls and Future Trends

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Agent Oriented Programming

I Use of mentalistic notions and a societal view of computation

I Various sophisticated abstractions
I Agent: Belief, Goal, Intention, Plan (this course)
I Organisation: Group, Role, Norm (see next course)
I Interaction: Speech Acts, Interaction protocols (this course)
I Environment: Artifacts, Percepts, Actions (see next course)

WI Master, Nov 2012 3 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Agent Oriented Programming
Features

I Reacting to events ⇥ long-term goals

I Course of actions depends on circumstance

I Plan failure (dynamic environments)

I Rational behaviour

I Social ability

I Combination of theoretical and practical reasoning

WI Master, Nov 2012 4 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Languages and Platforms

Jason (Hübner, Bordini, ...); 3APL and 2APL (Dastani, van
Riemsdijk, Meyer, Hindriks, ...); Jadex (Braubach, Pokahr);
MetateM (Fisher, Guidini, Hirsch, ...); ConGoLog (Lesperance,
Levesque, ... / Boutilier – DTGolog); Teamcore/ MTDP (Milind
Tambe, ...); IMPACT (Subrahmanian, Kraus, Dix, Eiter); CLAIM
(Amal El Fallah-Seghrouchni, ...); SemantiCore (Blois, ...);GOAL
(Hindriks); BRAHMS (Sierhuis, ...); STAPLE (Kumar, Cohen,
Huber); Go! (Clark, McCabe); Bach (John Lloyd, ...); MINERVA
(Leite, ...); SOCS (Torroni, Stathis, Toni, ...); FLUX (Thielscher);
JIAC (Hirsch, ...); JADE (Agostino Poggi, ...); JACK (AOS);
Agentis (Agentis Software); Jackdaw (Calico Jack); ...

WI Master, Nov 2012 5 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

AgentSpeak
the foundational language for Jason

I Originally proposed by Rao (1996)

I Programming language for BDI agents

I Elegant notation, based on logic programming

I Inspired by PRS (George↵ & Lansky), dMARS (Kinny), and
BDI Logics (Rao & George↵)

I Abstract programming language aimed at theoretical results

WI Master, Nov 2012 6 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason
a practical implementation of AgentSpeak

I Jason implements the operational semantics of a variant of
AgentSpeak

I Has various extensions aimed at a more practical programming
language (e.g. definition of the MAS, communication, ...)

I Highly customised to simplify extension and experimentation

I Developed by Rafael H. Bordini and Jomi F. Hübner

WI Master, Nov 2012 7 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Basics

I As in Prolog, any symbol (i.e. a sequence of characters)
starting with a lowercase letter is called an atom

I An atom is used to represent particular individuals or objects

I A symbol starting with an uppercase letter is interpreted as a
logical variable

I Initially variables are free or uninstantiated and once
instantiated or bound to a particular value, they maintain that
value throughout their scope (plan).

I Variables are bound to values by unification ; a formula is
called ground when it has no more uninstantiated variables.

WI Master, Nov 2012 8 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Main Language Constructs and Runtime Structures

I Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

I Goals: represent states of a↵airs the agent wants to bring
about

I Plans: are recipes for action, representing the agent’s
know-how

I Events: happen as a consequence to changes in the agent’s
beliefs or goals

I Intentions: plans instantiated to achieve some goal

WI Master, Nov 2012 9 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Main Architectural Components

I Belief base: where beliefs are stored

I Set of events: to keep track of events the agent will have to
handle

I Plan library: stores all the plans currently known by the agent

I Set of Intentions: each intention keeps track of the goals the
agent is committed to and the courses of action it chose in
order to achieve the goals for one of various foci of attention
the agent might have

WI Master, Nov 2012 10 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason basic reasoning cycle

I perceives the environment and update belief base

I processes new messages

I selects event

I selects relevant plans

I selects applicable plans

I creates/updates intention

I selects intention to execute

WI Master, Nov 2012 11 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Beliefs – Representation

Syntax

Beliefs are represented by annotated literals of first order logic

functor(term
1

, ..., term
n

)[annot
1

, ..., annot

m

]

Example (belief base of agent Tom)

red(box1)[source(percept)].

friend(bob,alice)[source(bob)].

lier(alice)[source(self),source(bob)].

~lier(bob)[source(self)].

WI Master, Nov 2012 12 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Beliefs – Dynamics I

by perception

beliefs annotated with source(percept) are automatically updated
accordingly to the perception of the agent

by intention

the operators + and - can be used to add and remove beliefs
annotated with source(self)

+lier(alice); // adds lier(alice)[source(self)]

-lier(john); // removes lier(john)[source(self)]

-+lier(john); // updates lier(john)[source(self)]

WI Master, Nov 2012 13 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Beliefs – Dynamics II

by communication

when an agent receives a tell message, the content is a new belief
annotated with the sender of the message

.send(tom,tell,lier(alice)); // sent by bob

// adds lier(alice)[source(bob)] in Tom’s BB

...

.send(tom,untell,lier(alice)); // sent by bob

// removes lier(alice)[source(bob)] from Tom’s BB

WI Master, Nov 2012 14 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Goals – Representation

Types of goals

I Achievement goal: goal to do

I Test goal: goal to know

Syntax

Goals have the same syntax as beliefs, but are prefixed by
! (achievement goal)
? (test goal)

Example (initial goal of agent Tom)

!write(book).

WI Master, Nov 2012 15 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Goals – Dynamics I

by intention

the operators ! and ? can be used to add a new goal annotated
with source(self)

...

// adds new achievement goal !write(book)[source(self)]

!write(book);

// adds new test goal ?publisher(P)[source(self)]

?publisher(P);

...

WI Master, Nov 2012 16 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Goals – Dynamics II

by communication – achievement goal

when an agent receives an achieve message, the content is a new
achievement goal annotated with the sender of the message

.send(tom,achieve,write(book)); // sent by Bob

// adds new goal write(book)[source(bob)] for Tom

...

.send(tom,unachieve,write(book)); // sent by Bob

// removes goal write(book)[source(bob)] for Tom

WI Master, Nov 2012 17 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Goals – Dynamics III

by communication – test goal

when an agent receives an askOne or askAll message, the content
is a new test goal annotated with the sender of the message

.send(tom,askOne,published(P),Answer); // sent by Bob

// adds new goal ?publisher(P)[source(bob)] for Tom

// the response of Tom will unify with Answer

WI Master, Nov 2012 18 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Events – Representation

I Events happen as a consequence to changes in the agent’s
beliefs or goals

I An agent reacts to events by executing plans

I Types of plan triggering events

+b (belief addition)
-b (belief deletion)

+!g (achievement-goal addition)
-!g (achievement-goal deletion)

+?g (test-goal addition)
-?g (test-goal deletion)

WI Master, Nov 2012 19 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Plans – Representation

An AgentSpeak plan has the following general structure:

triggering event : context <- body.

where:

I the triggering event denotes the events that the plan is meant
to handle (cf. events description)

I the context represents the circumstances in which the plan
can be used

I the body is the course of action to be used to handle the
event if the context is believed to be true at the time a plan is
being chosen to handle the event

WI Master, Nov 2012 20 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Plans – Operators for Plan Context

Boolean operators

& (and)

| (or)

not (not)

= (unification)

>, >= (relational)

<, <= (relational)

== (equals)

\ == (di↵erent)

Arithmetic operators

+ (sum)

- (subtraction)

* (multiply)

/ (divide)

div (divide – integer)

mod (remainder)

** (power)

WI Master, Nov 2012 21 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Plans – Operators for Plan Body

A plan body may contain:

I Belief operators (+, -, -+)

I Goal operators (!, ?, !!)

I Actions (internal/external) and Constraints

Example (plan’s body)

+beer : time to leave(T) & clock.now(H) & H >= T

<- !g1; // new sub-goal suspending plan execution

!!g2; // new goal not suspending plan execution

+b1(T-H); // adds new belief

-+b2(T*H); // updates belief

?b(X); // new test goal

X > 10; // constraint to carry on

close(door).// external action

WI Master, Nov 2012 22 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Plans – Example

+green patch(Rock)[source(percept)]

: not battery charge(low)

<- ?location(Rock,Coordinates);

!at(Coordinates);

!examine(Rock).

+!at(Coords)

: not at(Coords) & safe path(Coords)

<- move towards(Coords);

!at(Coords).

+!at(Coords)

: not at(Coords) & not safe path(Coords)

<- ...

+!at(Coords) : at(Coords).

WI Master, Nov 2012 23 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Plans – Dynamics

The plans that form the plan library of the agent comes from:

I initial plans defined by the programmer
I plans added dynamically and intentionally by

I .add plan
I .remove plan

I plans received from messages of type:
I tellHow
I untellHow

messages

WI Master, Nov 2012 24 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason basic reasoning cycle

I perceives the environment and update belief base

I processes new messages

I selects event

I selects relevant plans

I selects applicable plans

I creates/updates intention

I selects intention to execute

WI Master, Nov 2012 25 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason reasoning cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

WI Master, Nov 2012 26 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason vs Java I

Consider a very simple robot with two goals:

I when a piece of gold is seen, go to it

I when battery is low, charge

WI Master, Nov 2012 27 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason vs Java II

Example (Java code – go to gold)

public class Robot extends Thread {
boolean seeGold, lowBattery;

public void run() {
while (true) {

while (! seeGold) {
}
while (seeGold) {

a = selectDirection();

doAction(go(a));

} } } }

(how to code the charge battery behaviour?)

WI Master, Nov 2012 28 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason vs Java III

Example (Java code – charge battery)

public class Robot extends Thread {
boolean seeGold, lowBattery;

public void run() {
while (true) {

while (! seeGold)

if (lowBattery) charge();

while (seeGold) {
a = selectDirection ();

if (lowBattery) charge();

doAction(go(a));

if (lowBattery) charge();

} } } }

(note where the test for low battery have to be done)

WI Master, Nov 2012 29 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason vs Java IV

Example (Jason code)

+see(gold)

<- !goto(gold).

+!goto(gold) : see(gold) // long term goal

<- !select direction(A);

go(A);

!goto(gold).

+battery(low) // reactivity

<- .suspend(goto(gold));

!charge;

.resume(goto(gold)).

WI Master, Nov 2012 30 / 59

Fundamentals Features Use in MAS Perspectives Beliefs Goals Events Plans Reasoning Comparison

Jason vs Prolog

I With the Jason extensions, nice separation of theoretical and
practical reasoning

I BDI architecture allows
I long-term goals (goal-based behaviour)
I reacting to changes in a dynamic environment
I handling multiple foci of attention (concurrency)

I Acting on an environment and a higher-level conception of a
distributed system

WI Master, Nov 2012 31 / 59

1 Origins and Fundamentals

2 Features
Negation
Rules
Plan Annotations
Failure Handling
Internal Actions
Customisations

3 Use of Jason within a Multi-Agent System

4 Current Shortfalls and Future Trends

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Negation

Negation as failure

I not: formula is true if the interpreter fails to derive it

I Closed world assumption: anything that is neither known to
be true, nor derivable from the known facts using the rules in
the program, is assumed to be false.

Strong negation

I ~: used to express that an agent explicitly believes something
to be false.

WI Master, Nov 2012 33 / 59

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Strong negation

Example

+!leave(home)

: ~raining

<- open(curtains); ...

+!leave(home)

: not raining & not ~raining

<- .send(mum,askOne,raining,Answer,3000); ...

WI Master, Nov 2012 34 / 59

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Prolog-like Rules in the Belief Base

Rules

Rules can be used to simplify certain taks, i.e. making certain
conditions used in plans more succinct.
Their syntax is similar to the one used for plans.

Example

likely color(Obj,C) :-

colour(Obj,C)[degOfCert(D1)] &

not (colour(Obj,)[degOfCert(D2)] & D2 > D1) &

not ~colour(Obj,B).

WI Master, Nov 2012 35 / 59

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Plan Annotations

I Like beliefs, plans can also have annotations, which go in the
plan label

I Annotations contain meta-level information for the plan,
which selection functions can take into consideration

I The annotations in an intended plan instance can be changed
dynamically (e.g. to change intention priorities)

I There are some pre-defined plan annotations, e.g. to force a
breakpoint at that plan or to make the whole plan execute
atomically

Example (an annotated plan)

@myPlan[chance of success(0.3), usual payoff(0.9),

any other property]

+!g(X) : c(t) <- a(X).

WI Master, Nov 2012 36 / 59

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Failure handling

Example (an agent blindly committed to g)

+!g : g.

+!g : ... <- ... ?g.

-!g : true <- !g.

WI Master, Nov 2012 37 / 59

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Meta Programming

Example (an agent that asks for plans on demand)

-!G[error(no relevant)] : teacher(T)

<- .send(T, askHow, { +!G }, Plans);

.add plan(Plans);

!G.

in the event of a failure to achieve any goal G due to no
relevant plan, asks a teacher for plans to achieve G and
then try G again

I The failure event is annotated with the error type, line,
source, ... error(no relevant) means no plan in the agent’s
plan library to achieve G

I { +!G } is the syntax to enclose triggers/plans as terms

WI Master, Nov 2012 38 / 59

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Internal Actions

I Unlike actions, internal actions do not change the environment

I Code to be executed as part of the agent reasoning cycle

I AgentSpeak is meant as a high-level language for the agent’s
practical reasoning and internal actions can be used for
invoking legacy code elegantly

I Internal actions can be defined by the user in Java

libname.action name(. . .)

WI Master, Nov 2012 39 / 59

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Standard Internal Actions

I Standard (pre-defined) internal actions have an empty library
name

I .print(term
1

, term
2

, . . .)
I .union(list

1

, list
2

, list
3

)
I .my name(var)
I .send(ag,perf ,literal)
I .intend(literal)
I .drop intention(literal)

I Many others available for: printing, sorting, list/string
operations, manipulating the beliefs/annotations/plan library,
creating agents, waiting/generating events, etc.

WI Master, Nov 2012 40 / 59

Fundamentals Features Use in MAS Perspectives Negation Rules Plan Annotations Failure Internal Actions Customisations

Jason Customisations

I Agent class customisation:
selectMessage, selectEvent, selectOption, selectIntetion, buf,
brf, ...

I Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

I Belief base customisation:
add, remove, contains, ...

I Example: persistent belief base
(in text files, in data bases,)

WI Master, Nov 2012 41 / 59

1 Origins and Fundamentals

2 Features

3 Use of Jason within a Multi-Agent System
Platforms
Definition of a Simulated Environment
MAS project
Tools

4 Current Shortfalls and Future Trends

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

Execution & Communication Platform

Di↵erent execution and communication platforms can be used with
Jason:

Centralised: all agents in the same machine,
one thread by agent, very fast

Centralised (pool): all agents in the same machine,
fixed number of thread,
allows thousands of agents

Jade: distributed agents, FIPA-ACL

Saci: distributed agents, KQML

.... others defined by the user (e.g. AgentScape)

WI Master, Nov 2012 43 / 59

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

Definition of a Simulated Environment

I There will normally be an environment where the agents are
situated

I The agent architecture needs to be customised to get
perceptions and to act on such environment

I We often want a simulated environment (e.g. to test a MAS
application)

I This is done in Java by extending Jason’s Environment class

WI Master, Nov 2012 44 / 59

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

Interaction with the Environment Simulator

Environment
Simulator

Agent
Architecture

executeAction

getPercepts

change
percepts

Reasoner

perceive

act

WI Master, Nov 2012 45 / 59

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

Example of an Environment Class

1 import jason.*;
2 import ...;
3 public class robotEnv extends Environment {
4
5 public robotEnv() {
6 Literal gp =
7 Literal.parseLiteral("green_patch(souffle)");
8 addPercept(gp);
9 }

10
11 public boolean executeAction(String ag, Structure action) {
12 if (action.equals(...)) {
13 addPercept(ag,
14 Literal.parseLiteral("location(souffle,c(3,4))");
15 }
16 ...
17 return true;
18 } }

WI Master, Nov 2012 46 / 59

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

MAS Configuration Language I

I Simple way of defining a multi-agent system

Example (MAS that uses JADE as infrastructure)

MAS my_system {

infrastructure: Jade

environment: robotEnv

agents:

c3po;

r2d2 at jason.sourceforge.net;

bob #10; // 10 instances of bob

classpath: "../lib/graph.jar";

}

WI Master, Nov 2012 47 / 59

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

MAS Configuration Language II

I Configuration of event handling, frequency of perception,
user-defined settings, customisations, etc.

Example (MAS with customised agent)

MAS custom {

agents: bob [verbose=2,paramters="sys.properties"]

agentClass MyAg

agentArchClass MyAgArch

beliefBaseClass jason.bb.JDBCPersistentBB(

"org.hsqldb.jdbcDriver",

"jdbc:hsqldb:bookstore",

...

}

WI Master, Nov 2012 48 / 59

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

jEdit plugin

WI Master, Nov 2012 49 / 59

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

Eclipse plugin

WI Master, Nov 2012 50 / 59

Fundamentals Features Use in MAS Perspectives Platforms Environment MAS project Tools

Mind inspector

WI Master, Nov 2012 51 / 59

1 Origins and Fundamentals

2 Features

3 Use of Jason within a Multi-Agent System

4 Current Shortfalls and Future Trends
Perspectives: Some Past and Future Projects
Summary

Fundamentals Features Use in MAS Perspectives Perspectives Summary

Some Related Projects I

I Speech-act based communication
Joint work with Renata Vieira, Álvaro Moreira, and Mike
Wooldridge

I Cooperative plan exchange
Joint work with Viviana Mascardi, Davide Ancona

I Plan Patterns for Declarative Goals
Joint work with M.Wooldridge

I Planning (Felipe Meneguzzi and Colleagues)

I Web and Mobile Applications (Alessandro Ricci and
Colleagues)

I Belief Revision
Joint work with Natasha Alechina, Brian Logan, Mark Jago

WI Master, Nov 2012 53 / 59

Fundamentals Features Use in MAS Perspectives Perspectives Summary

Some Related Projects II

I Ontological Reasoning

I Joint work with Renata Vieira, Álvaro Moreira
I JASDL: joint work with Tom Klapiscak

I Goal-Plan Tree Problem (Thangarajah et al.)
Joint work with Tricia Shaw

I Trust reasoning (ForTrust project)

I Agent verification and model checking
Joint project with M.Fisher, M.Wooldridge, W.Visser,
L.Dennis, B.Farwer

WI Master, Nov 2012 54 / 59

Fundamentals Features Use in MAS Perspectives Perspectives Summary

Some Related Projects III

I Environments, Organisation and Norms
I Normative environments

Join work with A.C.Rocha Costa and F.Okuyama
I MADeM integration (Francisco Grimaldo Moreno)
I Normative integration (Felipe Meneguzzi)
I CArtAgO integration
I Moise

+ integration

I More on jason.sourceforge.net, related projects

WI Master, Nov 2012 55 / 59

Fundamentals Features Use in MAS Perspectives Perspectives Summary

Some Trends for Jason I

I Modularity and encapsulation
I Capabilities (JACK, Jadex, ...)
I Roles (Dastani et al.)
I Mini-agents (?)

I Recently done: meta-events

I To appear soon: annotations for declarative goals,
improvement in plan failure handling, etc.

I Debugging is hard, despite mind inspector, etc.

I Further work on combining with environments and
organisations

WI Master, Nov 2012 56 / 59

Fundamentals Features Use in MAS Perspectives Perspectives Summary

Summary

I AgentSpeak
I Logic + BDI
I Agent programming

I Jason
I AgentSpeak interpreter
I implements the operational semantics of AgentSpeak
I speech act based
I highly customisable
I useful tools
I open source
I open issues

WI Master, Nov 2012 57 / 59

Fundamentals Features Use in MAS Perspectives Perspectives Summary

More information

I http://jason.sourceforge.net

I Bordini, R. H., Hübner, J. F., and
Wooldrige, M.
Programming Multi-Agent Systems in
AgentSpeak using Jason
John Wiley & Sons, 2007.

WI Master, Nov 2012 58 / 59

Fundamentals Features Use in MAS Perspectives Perspectives Summary

Bibliography I

Rao, A. S. (1996).

Agentspeak(l): Bdi agents speak out in a logical computable language.

In de Velde, W. V. and Perram, J. W., editors, MAAMAW, volume 1038 of

Lecture Notes in Computer Science, pages 42–55. Springer.

WI Master, Nov 2012 59 / 59

