
Multi-Agent Oriented Programming
– Environment Oriented Programming –

The CArtAgO Platform

O. Boissier, R.H. Bordini, J.F. Hübner, A. Ricci

September 2014

Outline

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Notion of Environment in MAS

The notion of environment is intrinsically related to the notion of
agent and multi-agent system

“An agent is a computer system that is situated in some
environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldrige and Jennings, 1995]
“An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the environment
through effectors.” [Russell and Norvig, 2003]

This notion includes both physical and software environments

September 2014 3 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Classic Properties of Environment in MAS

Basic classification [Russell and Norvig, 2003]
Accessible versus inaccessible: indicates whether the agents have
access to the complete state of the environment or not
Deterministic versus non deterministic: indicates whether a stage
change of the environment is uniquely determined by its current
state and the actions selected by the agents or not
Static versus Dynamic: indicates whether the environment can
change while an agent deliberates or not
Discrete versus Continuous: indicates whether the number or
percepts and actions are limited or not

Further classification [Ferber, 1999]
Centralized versus Distributed: indicates whether the environment
is a single monolithic system or a set of cells or places assembled
in a network
Generalized versus Specialized: indicates whether the
environment is independent of the kind of actions that can be
performed by agents or not.

September 2014 4 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Action Models

Action defined as a transition of the environment state:
from an observational point of view, the result of the behavior of an
agent -its action- is directly modelled by modifying the
environmental state variables

; not fully adequate for modelling Multi-Agent Systems: several
agents are acting concurrently on a shared environment
(concurrent actions)

Influence & reactions [Ferber and Muller, 1996]: clear distinction
between the products of the agents’ behavior and the reaction of
the environment

influences come from inside the agents and are attempts to modify
the course of events in the world
reactions are produced by the environment by combining
influences of all agents, given the local state of the environment
and the laws of the world

; handling simultaneous activity in the MAS

September 2014 5 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example of "Agents in Environment" Approach

[Russell and Norvig, 2003]

September 2014 6 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example of "Environment in Agents" Approach

MOVINGBEHAVIOR METHODSFOR: PRIVATE-PRIMITIVES
PRIMCHOOSEARANDOMPLACE
| PLACES <COLLECTION> P <AGENTSPLACE> NOPLACES |
P:=SELF PLACE.
P ISNIL IFTRUE: [ˆNIL].
NOPLACES:=P NONOBSTACLENEIGHBOURS.
PLACES:=NOPLACES SELECT: [:PP | SELF CANHEADTO: PP].
PLACES ISEMPTY IFTRUE: [PLACES := NOPLACES].
ˆPLACES AT: ((RND NEXT) * (PLACES SIZE - 1)) ROUNDED + 1
...

Example of MANTA Programming [Drogoul, 2003]

September 2014 7 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Environment along Agent Perspective

Agent-Oriented Programming perspective
languages / platforms for programming agents and MAS

Agent-0, Placa, April, Concurrent Metatem, ConGolog / IndiGolog,
AgentSpeak, AgentSpeak(L) / Jason, 3APL, IMPACT, Claim/Sympa,
2APL, GOAL, Dribble, etc
Jack, JADE, JADEX, AgentFactory, Brahms, JIAC, etc

Environment support
typically minimal: most of the focus is on agent architecture &
agent communication
in some cases: basic environment API: for “customising” the MAS
with a specific kind of environment

September 2014 8 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Environment in the Jason Platform

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment

September 2014 9 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Summary (1)

actions

percepts

SIMULATED

WORLD

OR

INTERFACE

OR

WRAPPER TO

EXISTING

TECHNOLOGY

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

MAS ENVIRONMENT

REAL WORLD
(PHYSICAL OR

COMPUTATIONAL)

mimicking

Example:

JAVA

PLATFORMAGENTS

MAS

September 2014 10 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Summary (2)

In most cases, no direct support.
; Indirectly supported by lower-level implementing technology (e.g.

Java)
In some cases, first environment API

; useful to create simulated environments or to interface with
external resources

simple model: a single / centralised object
defining agent (external) actions: typically a static list of actions,
shared by all the agents
generator of percepts: establishing which percepts for which agents

September 2014 11 / 87

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Environment as a first-class abstraction in MAS

Considering environment as an explicit part of the MAS
Providing an exploitable design and programming abstraction to
build MAS applications
Outcome

Clear distinction between the responsibilities of the agent and
those of the environment
Separation of concerns

Improving the engineering practice with three support levels
basic interface support
abstraction support
interaction-mediation support

September 2014 13 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Basic Interface Support
The environment enables agents to access the deployment context

i.e. the hardware and software and external resources with which
the MAS interacts
e.g. sensors and actuators, a printer, a network,a database, a
Web service, etc.

Figure from [Weyns et al., 2007]
September 2014 14 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Abstraction Support
Bridges the conceptual gap between the agent abstraction and
low-level details of the deployment context

Shields low-level details of the deployment context

Figure from [Weyns et al., 2007]
September 2014 15 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction-Mediation Support

Regulate the access to shared resources
Mediate interaction between agents

Figure from [Weyns et al., 2007]
September 2014 16 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Environment Definition Revised

Environment Definition [Weyns et al., 2007]
The environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both the
interaction among agents and the access to resources

September 2014 17 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Highlights 1/2

First-class abstraction
Environment as an independent building block in the MAS,
encapsulating its own clear-cut responsibilities, irrespective of the
agents

The environment provides the surrounding conditions for agents
to exist

environment as an essential part of every MAS
the part of the world with which the agents interact, in which the
effects of the agents will be observed and evaluated

September 2014 18 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Highlights 2/2

Environment as a glue
on their own, agents are just individual loci of control.
to build a useful system out of individual agents, agents must be
able to interact
the environment provides the glue that connects agents into a
working system

The environment mediates both the interaction among agents
and the access to resources

it provides a medium for sharing information and mediating
coordination among agents

as a mediator, the environment not only enables interaction, it also
constrains it
as such, the environment provides a design space that can be
exploited by the designer

September 2014 19 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Responsibilities 1/3

Structuring the MAS
the environment is a shared “space” for the agents, resources, and
services which structures the whole system

in terms of:
physical structure

refers to spatial structure, topology, and possibly distribution
interaction structure

refers to infrastructure for message transfer, infrastructure for
stigmergy, or support for implicit communication

social structure
refers to the embodiement of the organizational structure within the
environment

September 2014 20 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Responsibilities 2/3

Embedding resources and services
resources and services can be situated either in the physical
structure or in the abstraction layer introduced by the environment
the environment should provide support at the abstraction level
shielding low-level details of resources and services to the agents

Encapsulating a state and processes
besides the activity of the agents, the environment can have
processes of its own, independent of agents

example: evaporation, aggregation, and diffusion of digital
pheromones

It may also provide support for maintaining agent-related state
for example, the normative state of an electronic institution or tags for
reputation mechanisms

September 2014 21 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Responsibilities 3/3

Ruling and governing function
the environment can define different types of rules on all entities in
the MAS.

constraints imposed by the domain at hand or laws imposed by the
designer
may restrict the access of specific resources or services to particular
types of agents, or determine the outcome of agent interactions
preserving the agent system in a consistent state according to the
properties and requirements of the application domain

Examples
coordination infrastructures
e-Institutions

September 2014 22 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Reference Abstract Architecture

Figure from [Weyns et al., 2007]
September 2014 23 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Approaches

Looking for general-purpose approaches for conceiving,
designing, programming, executing the environment as agents’
world

orthogonality
generality
expressiveness

Uniformly integrating different MAS aspects
coordination, organisation, institutions, ...

Examples of concrete models and technologies
AGRE/AGREEN/MASQ [Baez-Barranco et al., 2007]
GOLEM [Bromuri and Stathis, 2007]
A&A, CArtAgO [Ricci et al., 2007]

September 2014 24 / 87

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Background Human Metaphor

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

September 2014 26 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Agent & Artifacts (A&A) Basic Concepts

Agents
autonomous, goal-oriented pro-active entities
create and co-use artifacts for supporting their activities,

besides direct communication

Artifacts
non-autonomous, function-oriented, stateful entities

controllable and observable
modelling the tools and resources used by agents

designed by MAS programmers

Workspaces
grouping agents & artifacts
defining the topology of the computational environment

September 2014 27 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

A&A Programming Model Features

Abstraction
artifacts as first-class resources and tools for agents

Modularisation
artifacts as modules encapsulating functionalities, organized in
workspaces

Extensibility and openness
artifacts can be created and destroyed at runtime by agents

Reusability
artifacts (types) as reusable entities, for setting up different kinds
of environments

September 2014 28 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

A&A Meta-Model in more Details

Artifact

Operation

Observable
Event

generate

Agentuse

perceive

Workspace

Environment

Observable
Property

update

perceive

observe

Manual

has

consult

link

create

dispose

link

join

quit

September 2014 29 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Artifact Abstract Representation

OperationX(Params)

...

ObsPropName(Args)

...

SIGNALS

USAGE

INTERFACE

OBSERVABLE

PROPERTIES

OperationY(Params)

...

LINK

INTERFACE

OPERATIONS

September 2014 30 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

A World of Artifacts

inc

count 5

reset

a counter

switch

state true

a flag

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

put

n_items 0

max_items 100

get

a bounded buffer

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

postEvent

registerForEvs

clearEvents

an event service

in

rd

out

a tuple space

September 2014 31 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Simple Artifacts Taxonomy

Individual or Personal Artifacts
designed to provide functionalities for a single agent use
e.g. agenda for managing deadlines, a library, ...

Social Artifacts
designed to provide functionalities for structuring and managing
the interaction in a MAS
coordination artifacts, organisation artifacts, ...
e.g. blackboard, game-board, ...

Boundary artifacts
to represent external resources/services (e.g. a printer, a Web
Service)
to represent devices enabling I/O with users (e.g. GUI, Console,
etc)

September 2014 32 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Actions/Percepts in Artifact-Based Environments

Explicit semantics refined by the (endogenous) environment:

success/failure semantics, execution semantics,

actions and Percepts constitute the Contract (in the Software Engineering
meaning) provided by the environment

Action Repertoire (actions <�> artifacts’ operations)

is given by the dynamic set of operations provided by the overall set of
artifacts available in the workspace

can be changed by creating/disposing artifacts.

Percept Repertoire (percepts <�> artifacts’ obs. prop.+signals)

is given by the dynamic set of properties representing the state of the
environment and by the signals concerning events signalled by the
environment

can be changed by creating/disposing artifacts.

September 2014 33 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction Model: Operation Execution (1)

op(Params)

ValuePropName

ValuePropName
...

...

AGENT

op(parms)
action

Performing an action corresponds to triggering the execution of
an operation

; acting on artifact’s usage interface

September 2014 34 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction Model: Operation Execution (2)

OPERATION EXECUTION
op(Params)

ValuePropName
Value
...

...

SIGNALS OBS PROPERTIES
CHANGE

AGENT

op(parms)
action

action completion
- with success or failure -

Operation execution is:
a process structured in one or multiple transactional steps
asynchronous with respect to agent ...which can proceed possibly
reacting to percepts and executing actions of other plans/activities

Operation completion causes action completion, generating
events with success or failure, possibly with action feedbacks

September 2014 35 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction Model: Observation (1)

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

focus

AGENT
OBSERVER

Agents can dynamically select which artifacts to observe
predefined focus/stopFocus actions

September 2014 36 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Interaction Model: Observation (2)

AGENT
OBSERVER

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

use

By focussing an artifact
observable properties are mapped into agent dynamic knowledge
about the state of the world, as percepts (e.g. belief base)
signals are mapped into percepts related to observable events

September 2014 37 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Artifact Linkability

WSP-X WSP-Y

linkedOp

Basic mechanism to enable inter-artifact interaction
linking artifacts through interfaces (link interfaces)

operations triggered by an artifact over an other artifact
Useful to design & program distributed environments

realised by set of artifacts linked together
possibly hosted in different workspaces

September 2014 38 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Artifact Manual

Agent-readable description of artifact’s...
functionality

what functions/services artifacts of that type provide
operating instructions

how to use artifacts of that type

Towards advanced use of artifacts by intelligent agents
dynamically choosing which artifacts to use to accomplish their
tasks and how to use them
strong link with Semantic Web research issues

Work in progress
defining ontologies and languages for describing the manuals

September 2014 39 / 87

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

CArtAgO

CArtAgO framework / infrastructure
1 environment for programming and executing artifact based

environments
2 Java-based programming model for defining artifacts
3 set of basic API for agent platforms to work within artifact-based

environment

integration with agent programming platforms: available bridges
for Jason, Jadex, AgentFactory, simpA, ongoing for 2APL and
Jade
Distributed and open MAS: workspaces distributed on Internet
nodes
Agents can join and work in multiple workspace at a time
(Role-Based Access Control (RBAC) security model)
Open-source technology

available at http://cartago.sourceforge.net

September 2014 41 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

CArtAgO Architecture

Agent Framworks /
Middlewares

CARTAGO

M
A

S

A
p

p
lic

a
ti
o

n

Artifact-based working environmentsApplication Agents

E
x
e

c
u

ti
o

n

P
la

tf
o

rm

MAS
Middleware

Layer

Application
Specific
Logic

workflow
engine

blackboard

shared
kb

map

Any

OS

JVM

OS

JVM

workspaces

artifacts

agent
bodies

JASON

3APL

JADE

workspaces

JADEX

...

JASON

shared

task

scheduler

shared

KB

blackboard

map

September 2014 42 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Pre-defined Artifacts

Each workspace contains by default a predefined set of artifacts
providing core and auxiliary functionalities
i.e. a pre-defined repertoire of actions available to agents...

Among the others
workspace, type: cartago.WorkspaceArtifact

functionalities to manage the workspace, including security
operations: makeArtifact, lookupArtifact, focus,...

node, type: cartago.NodeArtifact
core functionalities related to a node
operations: createWorkspace, joinWorkspace, ...

console, type cartago.tools.Console
operations: println,...

blackboard, type cartago.tools.TupleSpace
operations: out, in, rd, ...

....

September 2014 43 / 87

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts
Observable Property
Operations
Links between Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Defining an Artifact

An artifact type extends the cartago.Artifact class
An artifact is composed of:

state variables: class instance fields
observable properties with a set of primitives to define/update/..
them
signal primitive to generate signals
operation controls: methods annotated with @OPERATION

- The operation init is the operation which is automatically executed
when the artifact is created (analogous to constructor in objects).

internal operations: operations triggered by other operations,
methods annotated with @INTERNAL_OPERATION
await primitive to define the operation steps
guards - both for operation controls and operation steps -: methods
annotated with @GUARD

September 2014 45 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Observable property

Observable property is defined by a name and a value.
The value can change dynamically according to artifact
behaviour.
The change is made automatically observable to all the agents
focussing the artifact.
Defined by using defineObsProperty, specifying

the name of the property
the initial value (that can be of any type, including objects)

Accessed by
getObsProperty
updateObsProperty

September 2014 46 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Change of property

Change of the value of a property using primitive
; getObsProperty(String name).updateValue(Object value)
or updateObsProperty(String name, Object value)

the specified value must be compatible with the type of the
corresponding field
the value of the property is updated with the new value
an event is generated (content is the value of the property)
property_updated(PropertyName,NewValue,OldValue)
the event is made observable to all the agents focussing the
artifact

September 2014 47 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example

inc

count 5

OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: { op_exec_started(inc),

 count(X),

 op_exec_completed(inc) }

Example
public class Counter extends Artifact {

void init() {
defineObsProperty("count",0);

}
@OPERATION void inc() {

int count = getObsProperty("count").intValue();
updateObsProperty("count",count+1);

}
}

September 2014 48 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example (revisited)

inc

count 5

OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: { op_exec_started(inc),

 count(X),

 op_exec_completed(inc) }

Example
public class Counter extends Artifact {

void init() {
defineObsProperty("count",0);

}
@OPERATION void inc() {

ObsProperty prop = getObsProperty("count");
prop.updateValues(prop.intValue()+1);

}
}

September 2014 49 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Operations

Operation op(param1,param2,...) is defined as:
a method op, in the artifact class returning void
annotated with @OPERATION

Parameters can be input and/or output operation parameters
Output operation parameters (OpFeedbackParam<T>) can be
used to specify the operation results and related action feedback

Operation can be composed of zero, one or multiple atomic
computational steps
init method (defined or not as an operation) is called at the
initialisation of the artefact.

Example
public class Counter extends Artifact {

int count; // state variable
void init() { count = 0; }
@OPERATION void inc(OpFeedbackParam<Int> res)

{ res.set(++count); }
}

September 2014 50 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Observable Events

Observable events are generated by default:
op_execution_completed, op_execution_failed,
op_execution_aborted ...

Observable event can be generated explicitly, within an operation by
the method
; signal(String evType, Object variable params)

Generated event is a tuple, with evType label, composed of the
sequence of passed parameters
Generated event can be observed by

the agent responsible of the execution of the operation
all the agents observing the artifact

; signal(AgentId id, String evType, Object variable params)
Generated event is perceivable only by the specified agent that
must be observing the artifact, anyway.

September 2014 51 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example of Observable Events

Example

public class Count extends Artifact {
int count;
void init() { count = 0; }
@OPERATION void inc() {

count++;
signal("new_value", count);

}
}

September 2014 52 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Observable Events (cont’ed)

Failed primitive
failed(String failureMsg)
failed(String failureMsg, String descr, Object... args)

An action feedback is generated, reporting a failure msg and
optionally also a tuple descr(Object...) describing the failure.

September 2014 53 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example of Observable Events

Example
public class BoundedCounter extends Artifact {

private int max;
void init(int max) {

defineObsProperty("count",0);
this.max = max;

}

@OPERATION void inc() {
ObsProperty prop = getObsProperty("count");
if (prop.intValue() < max) {

prop.updateValue(prop.intValue()+1);
signal("tick");

} else {
failed("inc failed","inc_failed","max_value_reached",max);

}
}

}

September 2014 54 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example: Bounded Buffer with Output Parameters

public class BBuffer extends Artifact {
private LinkedList<Item> items;
private int nmax;
void init(int nmax) {

items = new LinkedList<Item>();
this.nmax = nmax;
defineObsProperty("n_items",0);

}
@OPERATION(guard="bufferNotFull") void put(Item obj) {

items.add(obj);
getObsProperty("n_items").updateValue(items.size());

}
@OPERATION void get(OpFeedbackParam<Item> res) {

await("itemAvailable");
Item item = items.removeFirst();
res.set(item);
getObsProperty("n_items").updateValue(items.size());

}
@GUARD boolean bufferNotFull(Item obj)

{ return items.size() < nmax; }
@GUARD boolean itemAvailable() { return items.size() > 0; }

}

September 2014 55 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Operation Guards

Guard on an operation is specified as:
a boolean method annotated with @GUARD, having the same
number and type of parameters of the guarded operation
Its name is included as the attribute guard of the @OPERATION
annotation

or used as parameter of the method await in the body of the
operation
The operation will be enabled only if (when) the guard is satisfied

Example
public class MyArtifact extends Artifact {

int m;
void init() { m=0; }
@OPERATION(guard="canExecOp1") void op1() { ... }
@OPERATION void op2() { m++; }
@GUARD boolean canExecOp1() { return m == 5; }

}

September 2014 56 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example: Bounded Buffer with Guarded Operations

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): {...}

get / (n_items >= 0) :

 { new_item(item:Item),...}

put

n_items 0

max_items 100

get

public class BBuffer extends Artifact {
private LinkedList<Item> items;
private int nmax;
void init(int nmax) {

items = new LinkedList<Item>();
defineObsProperty("max_items",nmax);
defineObsProperty("n_items",0);

}

@OPERATION(guard="bufferNotFull") void put(Object obj) {
items.add(obj);
getObsProperty("n_items").updateValue(items.size());

}
@GUARD boolean bufferNotFull(Item obj) {

int maxItems = getObsProperty("max_items").intValue();
return items.size() < maxItems;

}

@OPERATION(guard="itemAvailable") void get() {
Object item = items.removeFirst();
getObsProperty("n_items").updateValue(items.size());
signal("new_item",item);

}
@GUARD boolean itemAvailable() { return items.size() > 0; }

}

September 2014 57 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Multi-step Operation

Structured (non-atomic) operations are implemented with
one @OPERATION representing the entry point
one or multiple transactional steps, possibly with guards
await primitive to define the steps

September 2014 58 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example of Multi-step Operation

public class MyArtifact extends Artifact {
int internalCount;
@OPERATION void opWithResults(double x, double y,

OpFeedbackParam<Double> sum, OpFeedbackParam<Double> sub) {
sum.set(x+y);
sub.set(x-y);

}
@OPERATION void structureOp(int ntimes) {

internalCount=0;
signal("step1_completed");
await("canExecStep2", ntimes);
signal("step2_completed", internalCount);

}
@OPERATION void update(int delta) {

internalCount += delta;
}
@GUARD boolean canExecStep2(int ntimes) {

return internalCount >= ntimes;
}

}

September 2014 59 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example: Simple synchronisation artifact

ready

all_ready false

OBSERVABLE PROPERTIES:

all_ready: {true,false}

USAGE INTERFACE:

ready / true: { op_exec_completed }

public class SimpleSynchronizer extends Artifact {
int nReady, nParticipants;
void init(int nParticipants) {

defineObsProperty("all_ready",false);
nReady = 0;
this.nParticipants = nParticipants;

}
@OPERATION void ready() { // to synch

nReady++;
await("allReady");
getObsProperty("all_ready").updateValue(true);

}
@GUARD booolean allReady() {

return nReady >= nParticipants;
}

}

September 2014 60 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example: Bounded Buffer with Guarded Steps

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): {...}

get / (n_items >= 0) :

 { new_item(item:Item),...}

put

n_items 0

max_items 100

get

public class BBuffer extends Artifact {
private LinkedList<Item> items;
private int nmax;
@OPERATION void init(int nmax) {

items = new LinkedList<Item>();
defineObsProperty("max_items",nmax);
defineObsProperty("n_items",0);

}
@OPERATION void put(Object obj) {

await("bufferNotFull", obj);
items.add(obj);
getObsProperty("n_items").updateValue(items.size());

}
@GUARD boolean bufferNotFull(Item obj) {

int maxItems = getObsProperty("max_items").intValue();
return items.size() < maxItems;

}
@OPERATION void get() {

await("itemAvailable");
Object item = items.removeFirst();
getObsProperty("n_items").updateValue(items.size()-1);
signal("new_item",item);

}
@GUARD boolean itemAvailable() { return items.size() > 0; }

}

September 2014 61 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Temporal Guards on Operation Steps

Specified with await_time primitive
parameter indicates the number of milliseconds that must elapse
before the step could be executed, after having being triggered
its value is a long value greater than 0

September 2014 62 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Example of Temporally Guarded Operation

public class Clock extends Artifact {
boolean working;
final static long TICK_TIME = 100;
void init(){

working = false;
}
@OPERATION void start() {

if (!working) { working = true; execInternalOp("work");
} else {

failed(“already_working”); }
}
@OPERATION void stop() {

working = false;
}
@INTERNAL_OPERATION void work() {

while (working){
signal(“tick”);
await_time(TICK_TIME);

}
}

}

September 2014 63 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Link Interface

Set of operations that can be triggered by an artifact on another
artifact
Operations are annotated with @LINK (can be composed by
multiple steps, can generate events, etc.)

Example
public class LinkableArtifact extends Artifact {

int count;
void init() { count= 0; }
@LINK void inc() {

log("inc invoked."); count++;
signal("new_count_value",count);

}
}

Call of the operation from the linking Artifact is done using the
execLinkedOp primitive.

September 2014 64 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts Observable Property Operations Links between Artifacts

Linking Artifacts

Executing execLinkedOp triggers the operation
Once triggered, linked operation execution is the same as normal
operations
The only difference is:

the events that are generated by a linked operations, are made
observable to the agent using or observing the artifact that
triggered the execution of the link operation
In the case of a chain, with an agent X executing an operation on
an artifact, which links the operation of an artifact B, which links an
operation of an artifact C, all the observable events generated by B
and C linked operations are made observable to X

September 2014 65 / 87

1 Origins and Fundamentals

2 Environment Oriented Programming

3 Agent & Artifact Model

4 CArtAgO

5 Programming Artifacts

6 Programming Jason Agents & Artifacts

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

The Simplest Artifact

inc

count 5

OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: { op_exec_started(inc),

 count(X),

 op_exec_completed(inc) }

public class Counter extends Artifact {
void init() {
defineObsProperty("count",0);
}
@OPERATION void inc() {
int count = getObsProperty("count").intValue();
getObsProperty("count").updateValue(count+1);
}

}

September 2014 67 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Jason Agents using the Simplest Artifact (1)

!create_and_use.
+!create_and_use : true
<- !setupTool(Id);

// first use
inc;

// second use specifying the id
inc [artifact_id(Id)].

+!setupTool(C): true
<- makeArtifact("ourCount", "Counter",C).

September 2014 68 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Jason Agents observing the Simplest Artifact (2)

!observe.

+!observe : true
<- ?myTool(C); // query goal

focus(C).

+count(V) : V < 10 <- println(”count percept: ”,V)).

+count(V)[artifact_name(Id,”ourCount”)] : V >= 10
<- println(”stop observing.”));

stopFocus(Id).

+?myTool(CounterId): true
<- lookupArtifact(”ourCount”,CounterId).

-?myTool(CounterId): true <-.wait(10); ?myTool(CounterId).

September 2014 69 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Producer-Consumer Artifact

bounded-buffer artifact for producers-consumers scenarios

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): {...}

get / (n_items >= 0) :

 { new_item(item:Item),...}

put

n_items 0

max_items 100

get

public class BBuffer extends Artifact {
private LinkedList<Item> items;
private int nmax;
void init(int nmax) {

items = new LinkedList<Item>();
defineObsProperty("max_items",nmax);
defineObsProperty("n_items",0);

}

@OPERATION(guard="bufferNotFull") void put(Object obj) {
items.add(obj);
getObsProperty("n_items").updateValue(items.size()+1);

}
@GUARD boolean bufferNotFull(Item obj) {

int maxItems = getObsProperty("max_items").intValue();
return items.size() < maxItems;

}

@OPERATION(guard="itemAvailable") void get() {
Object item = items.removeFirst();
getObsProperty("n_items").updateValue(items.size()-1);
signal("new_item",item);

}
@GUARD boolean itemAvailable() { return items.size() > 0; }

}

September 2014 70 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Producer Jason Agent

item_to_produce(0).
!produce.

+!produce : true
<- !setupTools(Buffer); !produceItems.

+!produceItems : true
<- ?nextItemToProduce(Item);

put(Item);
!!produceItems.

+?nextItemToProduce(Item) : true <- -item_to_produce(Item);
+item_to_produce(Item+1).

+!setupTools(Buffer) : true
<- makeArtifact("myBuffer", "BoundedBuffer", [10], Buffer).

-!setupTools(Buffer) : true
<- lookupArtifact("myBuffer",Buffer).

September 2014 71 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Consumer Jason Agent

!consume.

+!consume: true
<- ?bufferToUse(Buffer);

.print("Going to use ",Buffer);
!consumeItems.

+!consumeItems : true
<- get(Item); !consumeItem(Item); !!consumeItems.

+!consumeItem(Item) : true <- ...

+?bufferToUse(BufferId) : true
<- lookupArtifact("myBuffer",BufferId).

-?bufferToUse(BufferId) : true
<- .wait(50); ?bufferToUse(BufferId).

September 2014 72 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Synchronisation Artifact

ready

all_ready false

OBSERVABLE PROPERTIES:

all_ready: {true,false}

USAGE INTERFACE:

ready / true: { op_exec_completed }

public class SimpleSynchronizer extends Artifact {
int nReady, nParticipants;
void init(int nParticipants) {

defineObsProperty("all_ready",false);
nReady = 0;
this.nParticipants = nParticipants;

}
@OPERATION void ready() { // to synch

nReady++;
nextStep("setAllReady");

}
@OPSTEP(guard="allReady") void setAllReady() {

getObsProperty("all_ready").updateValue(true);
}
@GUARD booolean allReady() {

return nReady >= nParticipants;
}

}

September 2014 73 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Jason Synch Agent - Reactive

Example
!work.
+!work: true <- ...
// locate the synch tool

lookupArtifact(âĂIJmySynchâĂİ,Synch);
// observe it.

focus(Synch);
// ready for synch

ready.
// react to all_ready(true) percept
+all_ready(true)[artifact_id(âĂIJmySynchâĂİ)] : true
<- // all ready, go on.

...

September 2014 74 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example: A Tuple-Space Artifact

public class SimpleTupleSpace extends Artifact {
 TupleSet tset;

 void init(){
 tset = new TupleSet();
 }

 @OPERATION void out(String name, Object... args){
 tset.add(new Tuple(name,args));
 }

 @OPERATION void in(String name, Object... params){
 TupleTemplate tt = new TupleTemplate(name,params);
 await("foundMatch",tt);
 Tuple t = tset.removeMatching(tt);
 bind(tt,t);
 }

 @OPERATION void rd(String name, Object... params){
 TupleTemplate tt = new TupleTemplate(name,params);
 await("foundMatch",tt);
 Tuple t = tset.readMatching(tt);
 bind(tt,t);
 }

 @GUARD boolean foundMatch(TupleTemplate tt){
 return tset.hasTupleMatching(tt);
 }

 private void bind(TupleTemplate tt, Tuple t){...}

Multi-step operations
operations composed by multiple transactional steps, possibly with
guards
await primitive to define the steps

September 2014 75 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Remarks

Process-based action execution semantics
action/operation execution can be long-term
action/operation execution can overlap

Key feature for implementing coordination functionalities

September 2014 76 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example: Dining Philosopher Agents

philo(0,"philo1",0,1).
philo(1,"philo2",1,2).
philo(2,"philo3",2,3).
philo(3,"philo4",3,4).
philo(4,"philo5",4,0).

!prepare_table.

+!prepare_table
 <- for (.range(I,0,4)) {
 out("fork",I);
 ?philo(I,Name,Left,Right);
 out("philo_init",Name,Left,Right);
 };
 for (.range(I,1,4)) {
 out("ticket");
 };
 println("done.").

!boot.

+!boot
 <- .my_name(Me);
 in("philo_init",Me,Left,Right);
 +my_left_fork(Left); +my_right_fork(Right);
 println(Me," ready.");
 !!enjoy_life.

+!enjoy_life
 <- !thinking; !eating; !!enjoy_life.

+!eating
 <- !acquireRes; !eat; !releaseRes.

+!acquireRes : my_left_fork(F1) & my_right_fork(F2)
 <- in("ticket"); in("fork",F1); in("fork",F2).

+!releaseRes: my_left_fork(F1) & my_right_fork(F2)
 <- out("fork",F1); out("fork",F2); out("ticket").

+!thinking <- .my_name(Me); println(Me," thinking").
+!eat <- .my_name(Me); println(Me," eating").

WAITER PHILOSOPHER AGENT

September 2014 77 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example 4: A Clock

public class Clock extends Artifact {

 boolean working;
 final static long TICK_TIME = 100;

 void init(){ working = false; }

 @OPERATION void start(){
 if (!working){
 working = true;
 execInternalOp("work");
 } else {
 failed("already_working");
 }
 }

 @OPERATION void stop(){ working = false; }

 @INTERNAL_OPERATION void work(){
 while (working){
 signal("tick");
 await_time(TICK_TIME);
 }
 }
}

!test_clock.

+!test_clock
 <- makeArtifac("myClock","Clock",[],Id);
 focus(Id);
 +n_ticks(0);
 start;
 println("clock started.").

@plan1
+tick: n_ticks(10)
 <- stop;
 println("clock stopped.").

@plan2 [atomic]
+tick: n_ticks(N)
 <- -+n_ticks(N+1);
 println("tick perceived!").

CLOCK CLOCK USER AGENT

Internal operations
execution of operations triggered by other operations
implementing controllable processes

September 2014 78 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example 5: GUI Artifacts

setValue

value 16.0

user

ok

closed

agent

Exploiting artifacts to enable interaction between human users
and agents

September 2014 79 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example 5: Agent and User Interaction

public class MySimpleGUI extends GUIArtifact {
 private MyFrame frame;

 public void setup() {
 frame = new MyFrame();

 linkActionEventToOp(frame.okButton,"ok");
 linkKeyStrokeToOp(frame.text,"ENTER","updateText");
 linkWindowClosingEventToOp(frame, "closed");
 defineObsProperty("value",getValue());
 frame.setVisible(true);
 }

 @INTERNAL_OPERATION void ok(ActionEvent ev){
 signal("ok");
 }

 @OPERATION void setValue(double value){
 frame.setText(""+value);
 updateObsProperty("value",value);
 }
 ...

 @INTERNAL_OPERATION
 void updateText(ActionEvent ev){
 updateObsProperty("value",getValue());
 }

 private int getValue(){
 return Integer.parseInt(frame.getText());
 }

 class MyFrame extends JFrame {...}
}

!test_gui.

+!test_gui
 <- makeArtifact("gui","MySimpleGUI",Id);
 focus(Id).

+value(V)
 <- println("Value updated: ",V).

+ok : value(V)
 <- setValue(V+1).

+closed
 <- .my_name(Me);
 .kill_agent(Me).

GUI ARTIFACT USER ASSISTANT AGENT

September 2014 80 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Remark: Action Execution & Blocking Behaviour

Given the action/operation map, by executing an action the
intention/activity is suspended until the corresponding operation
has completed or failed

action completion events generated by the environment and
automatically processed by the agent/environment platform bridge
no need of explicit observation and reasoning by agents to know if
an action succeeded

However the agent execution cycle is not blocked!
the agent can continue to process percepts and possibly execute
actions of other intentions

September 2014 81 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Example 6: Action Execution & Blocking Behaviour

// agent code

@processing_stream
+!processing_stream : true
 <- makeArtifact(“myStream”,”Stream”,Id);
 focus(Id);
 +sum(0);
 generate(1000);
 ?sum(S);
 println(S).

@update [atomic]
+new_number(V) : sum(S)
 <- -+sum(S+V).

// artifact code

class Stream extends Artifact {
 ...
 @OPERATION void generate(int n){
 for (int i = 0; i < n; i++){
 signal("new_number",i);
 }
 }
}

The agent perceives and processes new_number percepts as
soon as they are generate by the Stream

even if the processing_stream plan execution is suspended,
waiting for generate action completion

The test goal ?sum(S) is executed after generate action
completion

so we are sure that all numbers have been generated and
processed

September 2014 82 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Other Features

Other CArtAgO features not discussed in this lecture
linkability

executing chains of operations across multiple artifacts
multiple workspaces

agents can join and work in multiple workspaces, concurrently
including remote workspaces

RBAC security model
workspace artifact provides operations to set/change the access
control policies of the workspace, depending on the agent role
ruling agents’ access and use of artifacts of the workspace

...

See CArtAgO papers and manuals for more information

September 2014 83 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

A&A and CArtAgO: Some Research Explorations

Designing and implementing artifact-based organisation
Infrastructures

ORA4MAS infrastructure
Cognitive stigmergy based on artifact environments

Cognitive artifacts for knowledge representation and coordination

Artifact-based environments for argumentation
Including A&A in AOSE methodology
...

September 2014 84 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Applying CArtAgO and JaCa

Using CArtAgO/JaCa for building real-world applications and
infrastructures
Some examples

JaCa-WS / CArtAgO-WS
building SOA/Web Services applications using JaCa
http://cartagows.sourceforge.net

JaCa-Web
implementing Web 2.0 applications using JaCa
http://jaca-web.sourceforge.net

JaCa-Android
implementing mobile computing applications on top of the Android
platform using JaCa
http://jaca-android.sourceforge.net

September 2014 85 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Bibliography I

Baez-Barranco, J., Stratulat, T., and Ferber, J. (2007).
A unified model for physical and social environments.
In Weyns, Parunak, M., editor, Environments for Multi-Agent Systems III, Third
International Workshop, E4MAS 2006, Hakodate, Japan, May 8, 2006, Selected
Revised and Invited Papers, number 4389 in LNCS. Springer.

Bromuri, S. and Stathis, K. (2007).
Situating Cognitive Agents in GOLEM.
In Engineering Environment-Mediated Multiagent Systems (EEMMAS’07).

Drogoul, A. (2003).
De la simulation multi-agent à la résolution collective de problèmes. Une étude de
l’émergence de structures d’organisation dans les systèmes multi-agents.
PhD thesis, Université Paris 6.

Ferber, J. (1999).
Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence.
Addison-Wesley.

September 2014 86 / 87

Fundamentals EOP A&A CArtAgO Artifacts Jason & Artifacts

Bibliography II

Ferber, J. and Muller, J. (1996).
Influences and reaction: A model of situated multiagent systems.
In Tokoro, M., editor, Second international conference on multi-agent systems
(ICMAS 1996), Kyoto, Japan.

Ricci, A., Viroli, M., and Omicini, A. (2007).
’Give Agents their Artifacts’: The A&A Approach for Engineering Working
Environments.
In 6th international Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2007). Honolulu, Hawai’i, USA.

Russell and Norvig (2003).
Artificial Intelligence, A Modern Approach (second edition).

Weyns, D., Omicini, A., and Odell, J. (2007).
Environment as a First-class Abstraction in MAS.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

Wooldrige, M. J. and Jennings, N. R. (1995).
Intelligent agents: Theory and practice.
The Knowledge Engineering Review, 10(2):115–152.

September 2014 87 / 87

