
Institut Mines-Télécom

Simulation

Institut Mines-Télécom

Outline

! Introduction

! Multiagent-based Simulation approach

! Multiagent simulation platform

! Turtlekit

Institut Mines-Télécom

Introduction

Institut Mines-Télécom

Simulation
Introduction

! Simulation
• “The process of designing a model of a real system and conducting

experiments with this model for the purpose either of understanding
the behaviour of the system or of evaluating various strategies
(within the limits imposed by a criterion or a set of criteria) for the
operation of the system.” (Shannon 1976)

• “Simulation is the discipline of designing a model of an actual or
theoretical physical system, executing the model on a digital
computer, and analyzing the execution output” (Fishwick 1994)

! Model
• “To an observer B, an object A is a model of an object A to the extent

that B can use A to answer questions that interest him about A. “
[Minsky, 1965]

R. E. Shannon. Simulation modeling and methodology. In Proc. of the 76 Bicentennial Conference on Winter Simulation, pages 9-15, 1976.
P. A. Fishwick. Computer simulation : Growth through extension. In Society for Computer Simulation, pages 3-20, 1994
M. L. Minsky. Matter, mind, and models. In Proc. of the Intern. Federation of Information Processing Congress, vol. 1, pages 45-49, 1965.

Institut Mines-Télécom

Simulation
Introduction

! Simulation supports
• Understanding, Exploration, Clarification

─ to understand the behavior of the reference system thanks to a model
that is considered as a miniature reproduction of the reference system.

• Validation, Assessment, Verification
─ to test an hypothesis of the reference system, to validate or to certify the

underlying theory.
• Control, action, control

─ to support a decision process or a control that will influence the state of
the real reference system.

• Forecast, Prediction, Anticipation
─ to predict the possible evolutions of the reference system following

evolutions or disturbances.
• Communication, Formation, Visualization

─ to show and share the model of the dynamic of the reference system.

Institut Mines-Télécom

Multiagent-based Simulation
approach

Institut Mines-Télécom

Simulation
Methodologies

! Fishwick
• The model design associates the real system with a

representation of this system (the model).
─ This model is built from real observations (objective) or knowledge

(subjective).
─ Data are usually formalized using formal semantics or mathematical

logic to reduce ambiguities as much as possible.
─ It is then converted to algorithms,

• The model execution phase is the processing of the algorithm to
produce numerical outputs.

• The execution analysis phase, deals with the analysis and
confrontation of the results of the program with the behaviors
observed in the model.

Drogoul, A., Vanbergue, D., & Meurisse, T. (2003). Multi-agent based simulation: Where are the agents?. In Multi-agent-based simulation II
(pp. 1-15). Springer Berlin Heidelberg.

Fishwick, P.: Computer simulation: growth through extension. IEEE Potential February/ March (1996) 24 to 27

Institut Mines-Télécom

Simulation
Methodologies

! Gilbert and Troitzsch
• Refine the Fishwick

proposal with the addition
of the model building
phase

• The initial model is written
into a computer program:
the operational model
─Adaptation to the simulator
─ There are both operational

models and Simulators.
─ The differences between

models introduces bias.

Drogoul, A., Vanbergue, D., & Meurisse, T. (2003). Multi-agent
based simulation: Where are the agents?. In Multi-agent-based
simulation II (pp. 1-15). Springer Berlin Heidelberg.

Gilbert, N., Troitzsch, K.G.: Simulation for the
Social Scientist. Open University Press (1999)

Institut Mines-Télécom

Multiagent-based Simulation approach
bottom-up modeling approach

! Microscopic level: simulation of the behavior of the
components of the real system.
• The components: the agents
• Their relation: interaction and organization at a micro level.

! Macroscopic level: Observation, Analyze of properties of
the multiagent system.

! Example: Ants
• Micro level: ants are agents which put

pheromones in the environment
• Macro level: the shortest path

Institut Mines-Télécom

Multiagent-based Simulation approach
overview

! A Multiagent-based Simulation (MABS) is a microscopic simulation
model
• A Multi-agent system: the multiagent model of an actual or theoretical physical

system
• Simulation: controls of the evolution of the model in time.

! Advantages
• MABS supports

─ Multi-level modeling:
• Different models of “individuals”: from simple entities to more complex ones.
• Different levels of representation: “individuals” and “groups” within an unified conceptual

framework.
─ The simulation of complex systems:

• Structure preserving modeling of the simulated reality,
• simulation of proactive behaviors,
• Parallel computations,
• Dynamic simulation scenarios

! Limits
• Computation costs

Institut Mines-Télécom

Multiagent-based Simulation approach
Contributors

! The Thematician (expert of the domain)
• Role: Defines the intention of the simulation process.
• Result: the domain model which describes the multiagent model of the reality.

The agents are informally associated to the components of the system and their
relations are identified (interaction, organization).

! The modeler
• Role: He translates the knowledge of the thematician.
• Result: the design model where the agents are a refinement of the agents

in the domain model. Their properties are expressed using concepts taken
from multiagent domain (behavioral model, communications, …)

! The Computer Scientist
• Role: He designs the operational model and writes the computer program.
• Result: the computational system where agents are computational agents.

Drogoul, A., Vanbergue, D., & Meurisse, T. (2003). Multi-agent based simulation: Where are the agents?. In Multi-agent-based
simulation II (pp. 1-15). Springer Berlin Heidelberg.

Institut Mines-Télécom

Multiagent simulation platform

Institut Mines-Télécom

Multiagent, simulation platforms
Typology

! The operational, simulated model can be executed on a
• Generic multiagent platforms

─ Advantage: the computer scientist knows his environment, i.e. the platform
and the related multiagent model.

─ Limit: The platform must be adapted (or not) to support the simulation,
─ Example: JASON, JADE (Tapas, PlaSMA), MASH, MADKIT (Turtlekit)

• Generic simulation platforms
─ Advantage: the computer scientist can use the same environment for different

design models.
─ Limit: a new operational model has to be built for each new simulations.
─ Example: MASON, SWARM, GAMA, CORMAS, TURTLEKIT, REPAST,

NETLOGO, …
• specialized simulation platforms

─ Advantage: some parts of the operational model can be already available.
─ Limit: adaptation to a new platform.
─ Example (traffic simulation platform): Archisim ,MATSim, MITSIMlab, …

Institut Mines-Télécom

Multiagent, simulation platforms
Components

! Components of a multiagent platform

! A scheduler
• A temporal model: discrete, continuous, event
• A scheduling policy

─ Synchronization of agent evolution
─ Simulation of the simultaneity

Institut Mines-Télécom

Scheduler
Temporal models

! Discrete time model
• Time advances in discrete step, which are integer multiples of some basic period

such as 1 second, 1 day or …
• If the state at time t is q and the input time t is x, then the state at time t+1 will be

 δ(q,x) and the output y at time t will be λ(q,x)
─ δ is called the state transition function
─ λ is called the output function

! Discrete Time Simulation
Ti = ti, Tf = tf
x(0) = v0, …, x(9) = v9
q(0) = q0
t=Ti
while (t <= Tf) {

y(t) = λ(q(t),x(t))
q(t+1) = δ(q(t),x(t))
t = t+1

}

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of modeling and simulation: integrating discrete event and
continuous complex dynamic systems. Academic press.

Institut Mines-Télécom

Scheduler
Temporal models

! Discrete event models
• appropriate for those systems for which changes in system

state occur only at discrete points in time.
• A discrete points in time is called an event.

! Discrete Event Simulation
1. Initialize the state variables
2. Initialize the ‘collection of pending events’
3. Initialize the simulation clock
4. while (there are pending events to be handled){

Remove the pending event (E) with the smallest timestamp (t)
Set simulation clock to that time t
Execute the event handler for event E
}

Institut Mines-Télécom

Scheduler
Multiagent scheduler

scheduling algorithm based on
a discrete temporal model
T duration of the simulation
time = 0;
Agents= {agents of the simulation};
while (time < T){

For (a: Agents){
\\activate(a)

a.ContextComputation()
a.DecisionProcess()

a.actionProcessing()
}

time++
}

scheduling algorithm based on
a continuous temporal model
T duration of the simulation
time = System.time();
T = time + T
Agents= {agents of the simulation};
For (a: agent)

activate(a)
while (time < T)

time = System.time();

Institut Mines-Télécom

Scheduler
Simultaneity problem

! Discrete simulation
• Let t be the simulation time value and ai(t,q(t)) the action of the

ith agent following the current state of the simulated system q(t)
• How to ensure that q(t) will be the same for ai and ai+1 since

ai(t,q(t)) modifies the current state

Dealing with Multi-Agent Coordination by Anticipation: Application to the Traffic Simulation at Junctions.
A Doniec, S Espié, R Mandiau, S Piechowiak - EUMAS, 2005

Institut Mines-Télécom

Simultaneity problem
Solution

! No solution
• The most current solution,
• The action of an agent should not change the world in an important way. The

micro coordination problems resulting of the scheduling process are not taken
into account.

• The consequences of this choice have to be taken into account

! The scheduling policy
• The activation order of the agents is randomized
• If the number of agents and simulation steps are important then no agent should

be advantaged.
• If the simulation must be replayed, the random process has to be taken into

account by the simulation model.

! A dedicated mechanism
• The agents are activated in the same simulation state and the antagonism

between their action is resolved by a decision process.
• Influence / reaction model: The agents do not directly act in the simulation but

emit influences that are validated by the decision process.
Ferber, J., & Müller, J. P. (1996, December). Influences and reaction: a model of situated multiagent systems. In
Proceedings of Second International Conference on Multi-Agent Systems (ICMAS-96) (pp. 72-79).

Institut Mines-Télécom

Turtlekit

Institut Mines-Télécom

Illustrative Example

! Prey and Predators
• A multiagent model

─ Environment: a grid
─ Prey: reactive agents who avoid

the predators
─ Predator: communicative agents

who coordinate to catch the preys
─ When three predators are around a

prey, this last one die
• Simulation

─ A scheduling process
• Temporal model
• Activation process

Institut Mines-Télécom

Turtlekit
overview

! Plugin of the Madkit platform dedicated to the
simulation
• Supports the Madkit organizational model: the

AGR model

─ Interaction are regulated by the organizational model
• The communications are regulated following the

organizational model

• The perception can be implemented following the
organizational model

Institut Mines-Télécom

Turtlekit
overview

! Supports the simulation of heterogeneous multiagent model
• The superclass AbstractAgent contains the methods for the

─ Management of the life cycle:
• activate(); end(); launchAgent(...) ;killAgent(...)

─ Communication management:
• broadcastMessage(…); sendMessage(…) ; nextMessage();

isMessageBoxEmpty(); receiveMessage(Message m);
─ Organization management

• createGroup(); leaveGroup(); requestRole() ; getRoles(); isGroup(…);
getAgentsWithRole()

! Example
public void setup(){

playRole("predator");
ACLMessage m = new ACLMessage("INFORM",“I’m a new predator");
broadcastMessage("Turtlekit","HUNT","predator",m);

}

Institut Mines-Télécom

Turtlekit
overview

! Class Agent
• Inherits of the superclass AbstractAgent
• Implements the Runnable Interface

─ Methods “to control” the its thread
• exitImmediatlyOnKill() ; live() ; pause(int t) ; run().

─ Additional methods for communications
• waitNextMessage() ; waitNextMessage(long timeout)

! Example
public void live() {

while (true) {
Message m = waitNextMessage();
if (m instanceof ACLMessage)

handleMessage((ACLMessage)m);
} }

Institut Mines-Télécom

private boolean catched(){
int cpt=0;
for(int i=-1;i<=1;i++)

for(int j=-1;j<=1;j++)
if (! (i==0 && j==0)){

Turtle[] tur = turtlesAt(i,j);
if (tur!= null && tur.length>0 &&

tur[0].isPlayingRole("predator"))
cpt++;
}
if (cpt>3) return true;
return false;
}

Turtlekit
overview

! Class Turtle
• Inherits of the superclass AbstractAgent
• Do not implements the Runnable interface
• Additional methods

─ Related to the simulation process
• setup, activate, end

─ A turtle is a situated agent, he has methods to
• To be located in the environment

o setX, xcor, dx, distance, towards, getHeading,
• To move in the environment

o moveto, fd, home, turnLeft, turnRight
• To perceive the environment

o countTurtlesAt, countTurtleHere, turtlesAt, turtlesHere

! Example
public void setup(){

playRole("predator");
randomHeading();
setColor(Color.red);
if (countTurtlesHere()>0)

fd(1);
}

Institut Mines-Télécom

Turtlekit
Simulation

! Pseudo activation algorithm
time = 0; Turtle = {turtles of the simulation}; T duration of the simulation
While (time < T)

For (t: Turtle)
currentAction = scheduler.getCurrentActionTurtle(t)
nextAction = activate(t,currentAction)
scheduler.setCurrentActionTurtle(t,nextAction)

time++

Institut Mines-Télécom

madkit.kernel

madkit.messages

Madkit
Message

Message

ActMessage

ACLMessage KQMLMessage

StringMessage

ControlMessage

ObjectMessage

ObjectMessage

XMLMessage

KernelMessage

Institut Mines-Télécom

Madkit
Message

! Message
• getCreationDate; getReceiver; getSender

! ActMessage
• getAction; getContent; getFieldValue;

getInReplyTo; getObject; setContent; setField;
setInReplyTo; setObject

! ACLMessage
• getAct, getPerformative; setPerformative;

getReceivers;UHPRYH5HFHLYHU�FOHDU$OO5HFHLYHU.

