

Simulation

Introduction

Simulation supports

- Understanding, Exploration, Clarification
 - to understand the behavior of the reference system thanks to a model that is considered as a miniature reproduction of the reference system.
- Validation, Assessment, Verification
 - to test an hypothesis of the reference system, to validate or to certify the underlying theory.
- · Control, action, control
 - to support a decision process or a control that will influence the state of the real reference system.
- Forecast, Prediction, Anticipation
 - to predict the possible evolutions of the reference system following evolutions or disturbances.
- Communication, Formation, Visualization
 - to show and share the model of the dynamic of the reference system.

Multiagent-based Simulation approach

Institut Mines-Télécom

Simulation

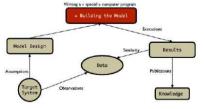
- The model design associates the real system with a representation of this system (the model).
 - This model is built from real observations (objective) or knowledge (subjective).
 - Data are usually formalized using formal semantics or mathematical logic to reduce ambiguities as much as possible.
 - It is then converted to algorithms,
- The model execution phase is the processing of the algorithm to produce numerical outputs.
- The execution analysis phase, deals with the analysis and confrontation of the results of the program with the behaviors observed in the model.

Fishwick, P.: Computer simulation: growth through extension. IEEE Potential February/ March (1996) 24 to 27

Drogoul, A., Vanbergue, D., & Meurisse, T. (2003). Multi-agent based simulation: Where are the agents?. In Multi-agent-based simulation II (pp. 1-15). Springer Berlin Heidelberg.

MINES

Methodologies


Gilbert and Troitzsch

- Refine the Fishwick proposal with the addition of the model building phase
- The initial model is written into a computer program: the operational model
 - Adaptation to the simulator
 - There are both operational models and Simulators.
 - The differences between models introduces bias.

Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientist. Open University Press (1999)

Institut Mines-Télécom

Drogoul, A., Vanbergue, D., & Meurisse, T. (2003). Multi-agent based simulation: Where are the agents?. In *Multi-agent-based simulation II* (pp. 1-15). Springer Berlin Heidelberg.

SS.

MINES int-Étien

Multiagent-based Simulation approach bottom-up modeling approach

- Microscopic level: simulation of the behavior of the components of the real system.
 - · The components: the agents
 - Their relation: interaction and organization at a micro level.
- Macroscopic level: Observation, Analyze of properties of the multiagent system.

Example: Ants

- Micro level: ants are agents which put pheromones in the environment
- Macro level: the shortest path

Institut Mines-Télécom

Multiagent-based Simulation approach

Contributors

The Thematician (expert of the domain)

- · Role: Defines the intention of the simulation process.
- Result: the domain model which describes the multiagent model of the reality. The agents are informally associated to the components of the system and their relations are identified (interaction, organization).

The modeler

- *Role*: He translates the knowledge of the thematician.
- *Result*: the *design model* where the agents are a refinement of the agents in the *domain model*. Their properties are expressed using concepts taken from multiagent domain (behavioral model, communications, ...)

The Computer Scientist

- · Role: He designs the operational model and writes the computer program.
- Result: the computational system where agents are computational agents.

Drogoul, A., Vanbergue, D., & Meurisse, T. (2003). Multi-agent based simulation: Where are the agents?. In Multi-agent-based simulation II (pp. 1-15). Springer Berlin Heidelberg.

Multiagent-based Simulation approach

overview

- A Multiagent-based Simulation (MABS) is a microscopic simulation model
 - A Multi-agent system: the multiagent model of an actual or theoretical physical system
 - · Simulation: controls of the evolution of the model in time.

Advantages

- MABS supports
 - Multi-level modeling:
 - Different models of "individuals": from simple entities to more complex ones.
 - Different levels of representation: "individuals" and "groups" within an unified conceptual framework.
 - The simulation of complex systems:
 - Structure preserving modeling of the simulated reality,
 - simulation of proactive behaviors,
 - · Parallel computations,
 - Dynamic simulation scenarios

Institut Mines-Télécom

Limits

Computation costs

SII)

MINES

Multiagent, simulation platforms

Typology

The operational, simulated model can be executed on a

- · Generic multiagent platforms
 - Advantage: the computer scientist knows his environment, i.e. the platform and the related multiagent model.
 - Limit: The platform must be adapted (or not) to support the simulation,
 - Example: JASON, JADE (Tapas, PlaSMA), MASH, MADKIT (Turtlekit)
- · Generic simulation platforms
 - Advantage: the computer scientist can use the same environment for different design models.
 - Limit. a new operational model has to be built for each new simulations.
 - Example: MASON, SWARM, GAMA, CORMAS, TURTLEKIT, REPAST, NETLOGO, ...
- specialized simulation platforms
 - Advantage: some parts of the operational model can be already available.
 - Limit: adaptation to a new platform.
 - Example (traffic simulation platform): Archisim ,MATSim, MITSIMlab, ...

Multiagent, simulation platforms

Components

Components of a multiagent platform

multi-agent					
is an environ	ment fo	or age	nts' d	eploymer	nt and
execution.					
Domain-dene	Domain-dependent Domain-dependent				Application
multi-agent app				application	level
Communicatio	n and		Or	ganizational	High-level
negotiation pro	tocols	Ontologi	ies	structures	services
Communication	Ager	nt life-	Chec	k-in, check-	Low-level
primitives	cycle m	nanager	out p	procedures	services
Distributed Low					OS level
	P/IP, B	luetooth,	etc.)	resources	03 level
processing (TC					

A scheduler

- · A temporal model: discrete, continuous, event
- A scheduling policy
 - Synchronization of agent evolution
 - Simulation of the simultaneity

Institut Mines-Télécom

Scheduler

Temporal models

Discrete time model

- Time advances in discrete step, which are integer multiples of some basic period such as 1 second, 1 day or ...
- If the state at time *t* is *q* and the input time *t* is x, then the state at time t+1 will be $\delta(q,x)$ and the output y at time t will be $\lambda(q,x)$
 - $-\ \delta$ is called the state transition function
 - $-~\lambda$ is called the output function

Discrete Time Simulation

```
 \begin{array}{l} T_i = t_i, \ T_f = t_f \\ x(0) = v_0, \ \ldots, \ x(9) = v_9 \\ q(0) = q_0 \\ t = T_i \\ \text{while } (t <= T_f) \\ y(t) = \lambda(q(t), x(t)) \\ q(t+1) = \delta(q(t), x(t)) \\ t = t+1 \\ \end{array}
```

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems. Academic press.

Scheduler

Temporal models

Discrete event models

- appropriate for those systems for which changes in system state occur only at discrete points in time.
- · A discrete points in time is called an event.

Discrete Event Simulation

- 1. Initialize the state variables
- 2. Initialize the 'collection of pending events'
- 3. Initialize the simulation clock
- 4. while (there are pending events to be handled){
 - Remove the pending event (E) with the smallest timestamp (t) Set simulation clock to that time t
 - Execute the event handler for event E

ì

S)

MINES

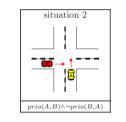
Scheduler

scheduling algorithm based on a continuous temporal model T duration of the simulation time = System.time(); T = time + T Agents= {agents of the simulation}; For (a: agent) activate(a) while (time < T) time = System.time();

Multiagent scheduler

scheduling algorithm based on a discrete temporal model T duration of the simulation time = 0; Agents= {agents of the simulation}; while (time < T){ For (a: Agents){ \\activate(a) a.ContextComputation() a.DecisionProcess() a.actionProcessing() }

time++


}

Scheduler

Simultaneity problem

Discrete simulation

- Let t be the simulation time value and a_i(t,q(t)) the action of the ith agent following the current state of the simulated system q(t)
- How to ensure that q(t) will be the same for a_i and a_{i+1} since a_i(t,q(t)) modifies the current state

Dealing with Multi-Agent Coordination by Anticipation: Application to the Traffic Simulation at Junctions. A Doniec, S Espié, R Mandiau, S Piechowiak - EUMAS, 2005

Institut Mines-Télécom	MINES Saint-Étienne

Turtlekit

Institut Mines-Télécom

Simultaneity problem

Solution

SS

MINES

No solution

- · The most current solution,
- The action of an agent should not change the world in an important way. The micro coordination problems resulting of the scheduling process are not taken into account.
- . The consequences of this choice have to be taken into account

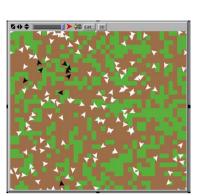
The scheduling policy

- The activation order of the agents is randomized
- If the number of agents and simulation steps are important then no agent should be advantaged.
- If the simulation must be replayed, the random process has to be taken into account by the simulation model.

A dedicated mechanism

- The agents are activated in the same simulation state and the antagonism between their action is resolved by a decision process.
- Influence / reaction model: The agents do not directly act in the simulation but emit influences that are validated by the decision process.

Ferber, J., & Müller, J. P. (1996, December). Influences and reaction: a model of situated multiagent systems. In Proceedings of Second International Conference on Multi-Agent Systems (ICMAS-96) (pp. 72-79).


014

Illustrative Example

Prey and Predators

- A multiagent model
 - Environment: a grid
 - Prey: reactive agents who avoid the predators
 - Predator: communicative agents who coordinate to catch the preys
 - When three predators are around a prey, this last one die
- Simulation
 - A scheduling process
 - Temporal model
 - Activation process

Institut Mines-Télécom

Turtlekit

overview

overview

- Plugin of the Madkit platform dedicated to the simulation
 - Supports the Madkit organizational model: the AGR model

- Interaction are regulated by the organizational model

- The communications are regulated following the organizational model
- The perception can be implemented following the organizational model

Turtlekit

Class Agent

Turtlekit

overview

MINES Jint-Étian

- Supports the simulation of heterogeneous multiagent model
 - The superclass AbstractAgent contains the methods for the
 - Management of the life cycle:
 - activate(); end(); launchAgent(...) ;killAgent(...)
 - Communication management:
 - broadcastMessage(...); sendMessage(...); nextMessage(); isMessageBoxEmpty(); receiveMessage(Message m);
 - Organization management
 - createGroup(); leaveGroup(); requestRole(); getRoles(); isGroup(...); getAgentsWithRole()

Example

- public void setup(){
 - playRole("predator");
 - ACLMessage m = new ACLMessage("INFORM","I'm a new predator"); broadcastMessage("Turtlekit","HUNT","predator",m);

}

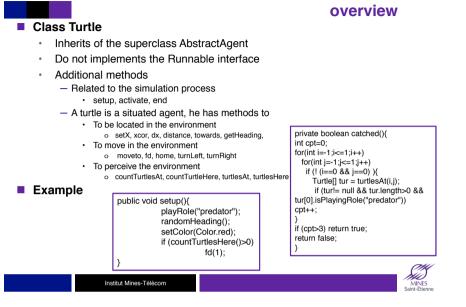
Example

public void live() {
 while (true) {
 Message m = waitNextMessage();
 if (m instanceof ACLMessage)
 handleMessage((ACLMessage)m);

exitImmediatlyOnKill(); live(); pause(int t); run().

waitNextMessage(); waitNextMessage(long timeout)

} }


· Inherits of the superclass AbstractAgent

- Additional methods for communications

Implements the Runnable Interface

- Methods "to control" the its thread

Turtlekit

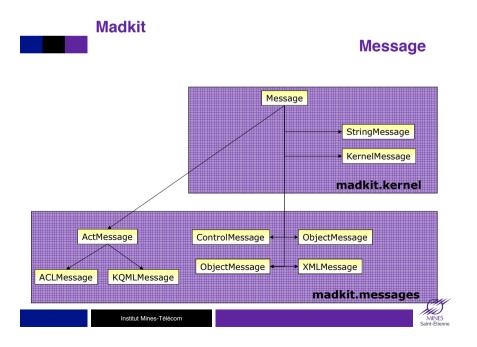
Turtlekit

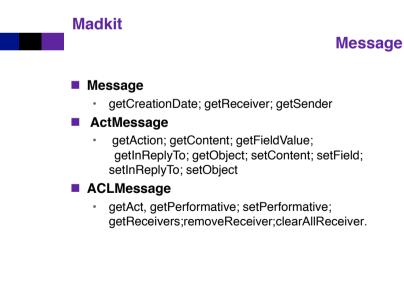
Simulation

Pseudo activation algorithm

time = 0; Turtle = {turtles of the simulation}; T duration of the simulation While (time < T)

For (t: Turtle)


time++


currentAction = scheduler.getCurrentActionTurtle(t) nextAction = activate(t,currentAction)

scheduler.setCurrentActionTurtle(t,nextAction)

ristiut Mines-Télécom

MINES Saint-Étienne

