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Tutorial Organisation
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I Programming Agents’ Interaction within JaCaMo
I Programming Agents’ Organisations within JaCaMo
I Conclusion & Perspectives
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Back to the Notion of Environment in MAS

I The notion of environment is intrinsically related to the notion of
agent and multi-agent system

I “An agent is a computer system that is situated in some
environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldridge, 2002]

I “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the environment
through effectors. ” [Russell and Norvig, 2003]

I Including both physical and software environments
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Single Agent Perspective

ENVIRONMENT

feedback

actions
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I Perception
I process inside agent inside of attaining awareness or understanding
sensory information, creating percepts perceived form of external
stimuli or their absence

I Actions
I the means to affect, change or inspect the environment
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Multi-Agent Perspective

I In evidence
I overlapping spheres of visibility and influence
I ..which means: interaction
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Why Environment Programming

I Basic level
I to create testbeds for real/external environments
I to ease the interface/interaction with existing software
environments

I Advanced level
I to uniformly encapsulate and modularise functionalities of the MAS
out of the agents

I typically related to interaction, coordination, organisation, security
I externalisation

I this implies changing the perspective on the environment
I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments

8



Environment Programming: General Issues

I Defining the interface
I actions, perceptions
I data-model

I Defining the environment computational model & architecture
I how the environment works
I structure, behaviour, topology
I core aspects to face: concurrency, distribution

I Defining the environment programming model
I how to program the environment
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Basic Level Overview
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Basic Level: Features

I Environment conceptually conceived as a single monolitic block
I providing actions, generating percepts

I Environment API
I to define the set of actions and program actions computational
behaviour

I which include the generation of percepts
I typically implemented using as single object/class in OO such as
Java

I method to execute actions
I fields to store the environment state

I available in many agent programming languages/frameworks
I e.g., Jason, 2APL, GOAL, JADEX
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An Example: Jason [Bordini et al., 2007] (without
JaCaMo)

I Flexible Java-based Environment API
I Environment base class to be specialised

I executeAction method to specify action semantics
I addPercept to generate percepts

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment
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Example (continued): MARS Environment in Jason

public class MarsEnv extends Environment {
  private MarsModel model;
  private MarsView  view;
  
  public void init(String[] args) {
        model = new MarsModel();
        view  = new MarsView(model);
        model.setView(view);
        updatePercepts();
  }
    
  public boolean executeAction(String ag, Structure action) {
    String func = action.getFunctor();
    if (func.equals("next")) {
      model.nextSlot();
    } else if (func.equals("move_towards")) {
      int x = (int)((NumberTerm)action.getTerm(0)).solve();
      int y = (int)((NumberTerm)action.getTerm(1)).solve();
      model.moveTowards(x,y);
    } else if (func.equals("pick")) {
      model.pickGarb();
    } else if (func.equals("drop")) {
      model.dropGarb();
    } else if (func.equals("burn")) {
      model.burnGarb();
    } else {
      return false;
    }
    
    updatePercepts();
    return true;
  }
  ...

  ...

    /* creates the agents perception 
     * based on the MarsModel */
  void updatePercepts() {

    clearPercepts();
        
    Location r1Loc = model.getAgPos(0);
    Location r2Loc = model.getAgPos(1);
        
    Literal pos1 =  Literal.parseLiteral
        ("pos(r1," + r1Loc.x + "," + r1Loc.y + ")");
    Literal pos2 = Literal.parseLiteral
        ("pos(r2," + r2Loc.x + "," + r2Loc.y + ")");

    addPercept(pos1);
    addPercept(pos2);

    if (model.hasGarbage(r1Loc)) {
      addPercept(Literal.parseLiteral("garbage(r1)"));
    }

    if (model.hasGarbage(r2Loc)) {
     addPercept(Literal.parseLiteral("garbage(r2)"));
    } 
  }

  class MarsModel extends GridWorldModel { ... }
    
  class MarsView extends GridWorldView { ... }    
}
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Example (continued): Jason Agents Playing on Mars

// mars robot 1

/* Initial beliefs */

at(P) :- pos(P,X,Y) & pos(r1,X,Y).

/* Initial goal */

!check(slots). 

/* Plans */

+!check(slots) : not garbage(r1)
   <- next(slot);
      !!check(slots).
+!check(slots). 

+garbage(r1) : not .desire(carry_to(r2))
   <- !carry_to(r2).
   
+!carry_to(R)   
   <- // remember where to go back
      ?pos(r1,X,Y); 
      -+pos(last,X,Y);
    
      // carry garbage to r2
      !take(garb,R);
    
      // goes back and continue to check
      !at(last); 
      !!check(slots).
...

...

+!take(S,L) : true
   <- !ensure_pick(S); 
      !at(L);
      drop(S).

+!ensure_pick(S) : garbage(r1)
   <- pick(garb);
      !ensure_pick(S).
+!ensure_pick(_).

+!at(L) : at(L).
+!at(L) <- ?pos(L,X,Y);
           move_towards(X,Y);
           !at(L).
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Another Example: 2APL [Dastani, 2008]

I 2APL
I BDI-based agent-oriented programming language integrating
declarative programming constructs (beliefs, goals) and imperative
style programming constructs (events, plans)

I Java-based Environment API
I Environment base class
I implementing actions as methods

I inside action methods external events can be generated to be
perceived by agents as percepts
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Example: Block-world Environment in 2APL

package blockworld;

public class Env extends apapl.Environment {

public void enter(String agent, Term x, Term y, Term c){...}

public Term sensePosition(String agent){...}

public Term pickup(String agent){...}

public void north(String agent){...}

  ... 

}
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2APL Agents in the block-world

BeliefUpdates:
  { bomb(X,Y) }         RemoveBomb(X,Y){ not bomb(X,Y) }
  { true }              AddBomb(X,Y)   { bomb(X,Y) }
  { carry(bomb) }       Drop( )        { not carry(bomb)}
  { not carry(bomb) }   PickUp( )      { carry(bomb) }

Beliefs:
  start(0,1).
  bomb(3,3).
  clean( blockWorld ) :- 
     not bomb(X,Y) , not carry(bomb).

Plans:
  B(start(X,Y)) ;
  @blockworld( enter( X, Y, blue ), L )

Goals:
  clean( blockWorld )

PG-rules:
  clean( blockWorld ) <- bomb( X, Y ) |
  {
    goto( X, Y );
    @blockworld( pickup( ), L1 );
    PickUp( );
    RemoveBomb( X, Y );
    goto( 0, 0 );
    @blockworld( drop( ), L2 );
    Drop( )
  }
...

...

PC-rules:
  goto( X, Y ) <- true |
  {
    @blockworld( sensePosition(), POS );
    B(POS = [A,B]);
    if B(A > X) then
    { @blockworld( west(), L );
      goto( X, Y )
    }
    else if B(A < X) then
    { @blockworld( east(), L );
      goto( X, Y )
    }
    else if B(B > Y) then
    { @blockworld( north(), L );
      goto( X, Y )
    }
    else if B(B < Y) then
    { @blockworld( south(), L );
      goto( X, Y )
    }
  }

  ...
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Environment Interface Standard – EIS Initiative

I Recent initiative supported by main APL research groups [?]
I GOAL, 2APL, GOAL, JADEX, JASON

I Goal of the initiative
I design and develop a generic environment interface standard

I a standard to connect agents to environments
I ... environments such as agent testbeds, commercial applications,

video games..

I Principles
I wrapping already existing environments
I creating new environments by connecting already existing apps
I creating new environments from scratch

I Requirements
I generic
I reuse
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EIS Meta-Model

I By means of the Env. Interface agents perform actions and collect
percepts

I actually actions/percepts are issued to controllable entities in
environment model

I represent the agent bodies, with effectors and sensors
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Environment Interface Features

I Interface functions
I attaching, detaching, and notifying observers (software design
pattern);

I registering and unregistering agents;
I adding and removing entities;
I managing the agents-entities-relation;
I performing actions and retrieving percepts;
I managing the environment

I Interface Intermediate language
I to facilitate data-exchange
I encoding percepts, actions, events
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Advanced Level Overview

I Vision: environment as a first-class abstraction in
MAS [Weyns et al., 2007, Ricci et al., 2011]

I application or endogenous environments, i.e. that environment
which is an explicit part of the MAS

I providing an exploitable design & programming abstraction to build
MAS applications

I Outcome
I distinguishing clearly between the responsibilities of agent and
environment

I separation of concerns
I improving the engineering practice
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Three Support Levels [Weyns et al., 2007]

I Basic interface support
I Abstraction support level
I Interaction-mediation support level
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Basic Interface Support

I The environment enables agents to access the deployment context
I i.e. the hardware and software and external resources with which
the MAS interacts
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Abstraction Support

I Bridges the conceptual gap between the agent abstraction and
low-level details of the deployment context

I shields low-level details of the deployment context
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Interaction-Mediation Support

I Regulate the access to shared resources
I Mediate interaction between agents
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Environment Definition Revised

Environment definition revised [Weyns et al., 2007]
The environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both the
interaction among agents and the access to resources
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Research on Environments for MAS

I Environments for Multi-Agent Systems research field / E4MAS
workshop series [Weyns et al., 2005]

I different themes and issues (see JAAMAS Special
Issue [Weyns and Parunak, 2007] for a good survey)

I mechanisms, architectures, infrastructures,
applications [Platon et al., 2007, Weyns and Holvoet, 2007,
Weyns and Holvoet, 2004, Viroli et al., 2007]

I the main perspective is (agent-oriented) software engineering
I Focus of this tutorial: the role of the environment abstraction in

MAS programming
I environment programming
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Environment Programming

I Environment as first-class programming
abstraction [Ricci et al., 2011]

I software designers and engineers perspective
I endogenous environments (vs. exogenous one)
I programming MAS =
programming Agents + programming Environment

I ..but this will be extended to include OOP in next part

I Environment as first-class runtime abstraction for agents
I agent perspective
I to be observed, used, adapted, constructed, ...

I Defining computational and programming frameworks/models also
for the environment part
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Computational Frameworks for Environment
Programming: Issues

I Defining the environment interface
I actions, percepts, data model
I contract concept, as defined in software engineering contexts
(Design by Contract)

I Defining the environment computational model
I environment structure, behaviour

I Defining the environment distribution model
I topology
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Programming Models for the Environment: Desiderata

I Abstraction
I keeping the agent abstraction level e.g. no agents sharing and
calling OO objects

I effective programming models for controllable and observable
computational entities

I Modularity
I away from the monolithic and centralised view

I Orthogonality
I wrt agent models, architectures, platforms
I support for heterogeneous systems
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Programming Models for the Environment: Desiderata

I Dynamic extensibility
I dynamic construction, replacement, extension of environment parts
I support for open systems

I Reusability
I reuse of environment parts for different kinds of applications
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Existing Computational Frameworks

I AGRE / AGREEN / MASQ [Stratulat et al., 2009]
I AGRE – integrating the AGR (Agent-Group-Role) organisation
model with a notion of environment

I Environment used to represent both the physical and social part of
interaction

I AGREEN / MASQ – extending AGRE towards a unified
representation for physical, social and institutional environments

I Based on MadKit platform [Gutknecht and Ferber, 2000]
I GOLEM [Bromuri and Stathis, 2008]

I Logic-based framework to represent environments for situated
cognitive agents

I composite structure containing the interaction between cognitive
agents and objects

I A&A and CArtAgO [Ricci et al., 2011]
I introducing a computational notion of artifact to design and
implement agent environments
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A&A and CArtAgO
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Agents and Artifacts (A&A) Conceptual Model:
Background Human Metaphor

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE 
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace
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A&A Basic Concepts [Omicini et al., 2008]

I Agents
I autonomous, goal-oriented pro-active entities
I create and co-use artifacts for supporting their activities

I besides direct communication

I Artifacts
I non-autonomous, function-oriented, stateful entities

I controllable and observable
I modelling the tools and resources used by agents

I designed by MAS programmers

I Workspaces
I grouping agents & artifacts
I defining the topology of the computational environment
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A&A Programming Model Features [Ricci et al., 2007b]

I Abstraction
I artifacts as first-class resources and tools for agents

I Modularisation
I artifacts as modules encapsulating functionalities, organized in
workspaces

I Extensibility and openness
I artifacts can be created and destroyed at runtime by agents

I Reusability
I artifacts (types) as reusable entities, for setting up different kinds of
environments
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A&A Meta-Model in More Detail [Ricci et al., 2011]

Artifact

Operation

Observable 
Event

generate

Agentuse

perceive

Workspace

Environment

Observable
Property

update

perceive

observe

Manual

has

consult

link

create

dispose

link

join

quit
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Artifact Abstract Representation

OperationX(Params)

...

ObsPropName(Args)

...

SIGNALS

USAGE

INTERFACE

OBSERVABLE 

PROPERTIES

OperationY(Params)

...

LINK

INTERFACE

OPERATIONS 
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A World of Artifacts

put

n_items 0

max_items 100

get

a bounded buffer

inc

count 5

reset

a counter

switch

state true

a flag

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

postEvent

registerForEvs

clearEvents

an event service

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

in

rd

out

a tuple space
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A Simple Taxonomy

I Individual or personal artifacts
I designed to provide functionalities for a single agent use

I e.g. an agenda for managing deadlines, a library...

I Social artifacts
I designed to provide functionalities for structuring and managing the
interaction in a MAS

I coordination artifacts [Omicini et al., 2004], organisation artifacts,
...

I e.g. a blackboard, a game-board,...

I Boundary artifacts
I to represent external resources/services

I e.g. a printer, a Web Service
I to represent devices enabling I/O with users

I e.g GUI, console, etc.
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Actions and Percepts in Artifact-Based Environments

I Explicit semantics defined by the (endogenous)
environment [Ricci et al., 2010b]

I success/failure semantics, execution semantics
I defining the contract (in the SE acceptation) provided by the
environment

actions ←→ artifacts’ operation

the action repertoire is given by the dynamic set of operations provided
by the overall set of artifacts available in the workspace can be changed
by creating/disposing artifacts
I action success/failure semantics is defined by operation semantics

percepts ←→ artifacts’ observable properties + signals

properties represent percepts about the state of the environment signals
represent percepts concerning events signalled by the environment
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Interaction Model: Use

op(Params)

ValuePropName

ValuePropName
...

...

AGENT

op(parms)
action

I Performing an action corresponds to triggering the execution of an
operation

I acting on artifact’s usage interface

44



Interaction Model: Operation execution

OPERATION EXECUTION
op(Params)

ValuePropName
Value
...

...

SIGNALS OBS PROPERTIES
CHANGE

AGENT

op(parms)
action

action completion
- with success or failure -

I a process structured in one or multiple transactional steps
I asynchronous with respect to agent

I ...which can proceed possibly reacting to percepts and executing
actions of other plans/activities

I operation completion causes action completion
I action completion events with success or failure, possibly with
action feedbacks
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Interaction Model: Observation

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

focus

AGENT
OBSERVER

I Agents can dynamically select which artifacts to observe
I predefined focus/stopFocus actions
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Interaction Model: Observation

AGENT
OBSERVER

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

use

I By focussing an artifact
I observable properties are mapped into agent dynamic knowledge
about the state of the world, as percepts

I e.g. belief base
I signals are mapped as percepts related to observable events
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Artifact Linkability

WSP-X WSP-Y

linkedOp

I Basic mechanism to enable inter-artifact interaction
I linking artifacts through interfaces (link interfaces)

I operations triggered by an artifact over an other artifact
I Useful to design & program distributed environments

I realised by set of artifacts linked together
I possibly hosted in different workspaces
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Artifact Manual

I Agent-readable description of artifact’s...
I ...functionality

I what functions/services artifacts of that type provide
I ...operating instructions

I how to use artifacts of that type

I Towards advanced use of artifacts by intelligent
agents [Piunti et al., 2008]

I dynamically choosing which artifacts to use to accomplish their
tasks and how to use them

I strong link with Semantic Web research issues
I Work in progress

I defining ontologies and languages for describing the manuals
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CArtAgO

I Common ARtifact infrastructure for AGent Open environment
(CArtAgO) [Ricci et al., 2009]

I Computational framework / infrastructure to implement and run
artifact-based environment [Ricci et al., 2007c]

I Java-based programming model for defining artifacts
I set of basic API for agent platforms to work within artifact-based
environment

I Distributed and open MAS
I workspaces distributed on Internet nodes

I agents can join and work in multiple workspace at a time
I Role-Based Access Control (RBAC) security model

I Open-source technology
I available at http://cartago.sourceforge.net
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Integration with Agent Languages and Platforms

I Integration with existing agent platforms [Ricci et al., 2008]
I by means of bridges creating an action/perception interface and
doing data binding

I Outcome
I developing open and heterogenous MAS
I introducing a further perspective on interoperability besides the
ACL’s one

I sharing and working in a common work environment
I common object-oriented data-model
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A&A in JaCaMo Platform

I Integration of CArtAgO with Jason language/platform
I Mapping

I actions
I Jason agent external actions are mapped onto artifacts’ operations

I percepts
I artifacts’ observable properties are mapped onto agent beliefs
I artifacts’ signals are mapped as percepts related to observable events

I data-model
I Jason data-model is extended to manage also (Java) objects
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Example 1: A Simple Counter Artifact

class Counter extends Artifact {
  
  void init(){
    defineObsProp("count",0);
  }
  
  @OPERATION void inc(){
    ObsProperty p = getObsProperty("count");
    p.updateValue(p.intValue() + 1);
    signal("tick");
  }
}

inc

count 5

I Some API spots
I Artifact base class
I @OPERATION annotation to mark artifact?s operations
I set of primitives to work define/update/.. observable properties
I signal primitive to generate signals
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Example 1: User and Observer Agents

!create_and_use.

+!create_and_use : true 
  <- !setupTool(Id);
     // use
     inc;
     // second use specifying the Id
     inc [artifact_id(Id)].

// create the tool
+!setupTool(C): true 
  <- makeArtifact("c0","Counter",C).

!observe.

+!observe : true 
  <- ?myTool(C);  // discover the tool
     focus(C).

+count(V) 
  <- println(“observed new value: “,V).

+tick [artifact_name(Id,”c0”)]  
  <- println(“perceived a tick”).

+?myTool(CounterId): true 
  <- lookupArtifact(“c0”,CounterId).

-?myTool(CounterId): true 
  <- .wait(10); 
     ?myTool(CounterId).

OBSERVER(S)USER(S)

I Working with the shared counter
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Pre-defined Artifacts

I Each workspace contains by default a predefined set of artifacts
I providing core and auxiliary functionalities
I i.e. a pre-defined repertoire of actions available to agents...

I Among the others
I workspace, type: cartago.WorkspaceArtifact

I functionalities to manage the workspace, including security
I operations: makeArtifact, lookupArtifact, focus,...

I node, type: cartago.NodeArtifact
I core functionalities related to a node
I operations: createWorkspace, joinWorkspace, ...

I console, type cartago.tools.Console
I operations: println,...

I blackboard, type cartago.tools.TupleSpace
I operations: out, in, rd, ...

I ....
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Example 2: Coordination Artifacts – A Bounded Buffer

public class BoundedBuffer extends Artifact {
  private LinkedList<Item> items;
  private int nmax;
  
  void init(int nmax){
    items = new LinkedList<Item>();
    defineObsProperty("n_items",0);
    this.nmax = nmax;
  }

  @OPERATION void put(Item obj){
    await("bufferNotFull");
    items.add(obj);

getObsProperty("n_items").updateValue(items.size());
  }

  @OPERATION void get(OpFeedbackParam<Item> res) {
    await("itemAvailable");
    Item item = items.removeFirst();

res.set(item);
getObsProperty("n_items").updateValue(items.size());

  }

  @GUARD boolean itemAvailable(){ return items.size() > 0; }

  @GUARD boolean bufferNotFull(Item obj){ return items.size() < nmax; }
}

put

n_items 5

get

I Basic operation features
I output parameters to represent action feedbacks
I long-term operations, with a high-level support for synchronization
(await primitive, guards)
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Example 2: Producers and Consumers

item_to_produce(0).
!produce.

+!produce: true 
  <- !setupTools(Buffer);
     !produceItems.

  
+!produceItems : true 
  <- ?nextItemToProduce(Item);
     put(Item);
     !!produceItems.

+?nextItemToProduce(N) : true 
  <- -item_to_produce(N);
     +item_to_produce(N+1).

+!setupTools(Buffer) : true 
  <- makeArtifact("myBuffer","BoundedBuffer",
                  [10],Buffer).

-!setupTools(Buffer) : true 
  <- lookupArtifact("myBuffer",Buffer).

!consume.

+!consume: true 
  <- ?bufferReady;
     !consumeItems.
    
+!consumeItems: true 
  <- get(Item);
     !consumeItem(Item);
     !!consumeItems.

+!consumeItem(Item) : true 
  <- .my_name(Me);
     println(Me,": ",Item).
  
+?bufferReady : true 
  <- lookupArtifact("myBuffer",_).  
-?bufferReady : true 
  <-.wait(50);
     ?bufferReady.

PRODUCERS CONSUMERS
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Remarks

I Process-based operation execution semantics
I action/operation execution can be long-term
I action/operation execution can overlap
I key feature for implementing coordination functionalities

I Operation with output parameters as action feedbacks
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Action Execution & Blocking Behaviour

I Given the action/operation map, by executing an action the
intention/activity is suspended until the corresponding operation
has completed or failed

I action completion events generated by the environment and
automatically processed by the agent/environment platform bridge

I no need of explicit observation and reasoning by agents to know if
an action succeeded

I However the agent execution cycle is not blocked!
I the agent can continue to process percepts and possibly execute
actions of other intentions
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Example 3: Internal Processes – A Clock

public class Clock extends Artifact {

  boolean working;
  final static long TICK_TIME = 100;

      
  void init(){ working = false; }

    
  @OPERATION void start(){
    if (!working){
      working = true;
      execInternalOp("work");
    } else {
      failed("already_working");
    }
  }

  
  @OPERATION void stop(){ working = false; }

  @INTERNAL_OPERATION void work(){
    while (working){
      signal("tick");
      await_time(TICK_TIME);
    }
  }
}

!test_clock.

+!test_clock
  <- makeArtifac("myClock","Clock",[],Id);
     focus(Id);
     +n_ticks(0);
     start;
     println("clock started.").

@plan1
+tick: n_ticks(10)  
  <- stop;
     println("clock stopped.").

@plan2 [atomic]
+tick: n_ticks(N)  
  <- -+n_ticks(N+1);
     println("tick perceived!").

CLOCK CLOCK USER AGENT

I Internal operations
I execution of operations triggered by other operations
I implementing controllable processes
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Example 4: Artifacts for User I/O – GUI Artifacts

setValue

value 16.0

user

ok

closed

agent

I Exploiting artifacts to enable interaction between human users and
agents
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Example 4: Agent and User Interaction

public class MySimpleGUI extends GUIArtifact {
  private MyFrame frame;
  
  public void setup() {
    frame = new MyFrame();
    
    linkActionEventToOp(frame.okButton,"ok");
    linkKeyStrokeToOp(frame.text,"ENTER","updateText");
    linkWindowClosingEventToOp(frame, "closed");
    defineObsProperty("value",getValue());
    frame.setVisible(true);   
  }

  @INTERNAL_OPERATION void ok(ActionEvent ev){
    signal("ok");
  }

  @OPERATION void setValue(double value){
    frame.setText(""+value);
    updateObsProperty("value",value);
  }
  ...
 
  @INTERNAL_OPERATION 
  void updateText(ActionEvent ev){
    updateObsProperty("value",getValue());
  }

  private int getValue(){
    return Integer.parseInt(frame.getText());
  }

  class MyFrame extends JFrame {...}
}

!test_gui.

+!test_gui
  <-  makeArtifact("gui","MySimpleGUI",Id);
      focus(Id).

+value(V) 
  <- println("Value updated: ",V).
  
+ok : value(V)
  <-  setValue(V+1).

+closed
  <-  .my_name(Me);
      .kill_agent(Me).
     

GUI ARTIFACT USER ASSISTANT AGENT 
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Other Features

I Other CArtAgO features not discussed in this lecture
I linkability

I executing chains of operations across multiple artifacts
I multiple workspaces

I agents can join and work in multiple workspaces, concurrently
I including remote workspaces

I RBAC security model
I workspace artifact provides operations to set/change the access

control policies of the workspace, depending on the agent role
I ruling agents’ access and use of artifacts of the workspace

I ...

I See CArtAgO papers and manuals for more information
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A&A and CArtAgO: Some Research Explorations

I Cognitive stigmergy based on artifact
environments [Ricci et al., 2007a]

I cognitive artifacts for knowledge representation and
coordination [Piunti and Ricci, 2009]

I Artifact-based environments for argumentation [Oliva et al., 2010]
I Including A&A in AOSE methodology [Molesini et al., 2005]
I Defining a Semantic (OWL-based) description of artifact

environments ( CArtAgO-DL)
I JaSa project = JASDL + CArtAgO-DL

I ...
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Applying CArtAgO and JaCaMo

I Using JaCaMo for building real-world applications and
infrastructures

I Some examples
I JaCa-Android

I implementing mobile computing applications on top of the Android
platform using JaCa [Santi et al., 2011]

I http://jaca-android.sourceforge.net
I JaCa-WS / CArtAgO-WS

I building SOA/Web Services applications using
JaCa [Ricci et al., 2010a]

I http://cartagows.sourceforge.net
I JaCa-Web

I implementing Web 2.0 applications using JaCa
I http://jaca-web.sourceforge.net
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Wrap-up

I Environment programming
I environment as a programmable part of the MAS
I encapsulating and modularising functionalities useful for agents’
work

I Artifact-based environments
I artifacts as first-class abstraction to design and program complex
software environments

I usage interface, observable properties / events, linkability
I artifacts as first-order entities for agents

I interaction based on use and observation
I agents dynamically co-constructing, evolving, adapting their world

I CArtAgO computational framework
I programming and executing artifact-based environments
I integration with heterogeneous agent platforms
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