
Multi-Agent Oriented Programming
The JaCaMo Platform

O. Boissier1 R.H. Bordini2 J.F. Hübner3 A. Ricci4

1. Mines Saint-Etienne (ENSMSE), Saint Etienne, France

2 Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

3. Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

4. University of Bologna (UNIBO), Bologna, Italy

September 2016

http://www.emse.fr/~boissier/
https://www.inf.pucrs.br/r.bordini/Rafael_Bordini/Welcome.html
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/

Tutorial Organisation

I Introduction to Multi-Agent Oriented Programming
I Programming Agents within JaCaMo
I Programming Agents’ Environment within JaCaMo
I Programming Agents’ Interaction within JaCaMo
I Programming Agents’ Organisations within JaCaMo
I Conclusion & Perspectives

2

MAOP
Programming

Agents’ Environment

Outline

Programming Agents’ Environment
Fundamentals
Existing approaches
Artifacts and CArtAgO
CArtAgO and Agents (E-A)
Conclusions and wrap-up

4

Back to the Notion of Environment in MAS

I The notion of environment is intrinsically related to the notion of
agent and multi-agent system

I “An agent is a computer system that is situated in some
environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldridge, 2002]

I “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the environment
through effectors. ” [Russell and Norvig, 2003]

I Including both physical and software environments

5

Single Agent Perspective

ENVIRONMENT

feedback

actions

percepts
effectors / actuators

sensors

acti
on to

 d
o

PERCEPTION

DECISION

ACTION

I Perception
I process inside agent inside of attaining awareness or understanding
sensory information, creating percepts perceived form of external
stimuli or their absence

I Actions
I the means to affect, change or inspect the environment

6

Multi-Agent Perspective

I In evidence
I overlapping spheres of visibility and influence
I ..which means: interaction

7

Why Environment Programming

I Basic level
I to create testbeds for real/external environments
I to ease the interface/interaction with existing software
environments

I Advanced level
I to uniformly encapsulate and modularise functionalities of the MAS
out of the agents

I typically related to interaction, coordination, organisation, security
I externalisation

I this implies changing the perspective on the environment
I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments

8

Environment Programming: General Issues

I Defining the interface
I actions, perceptions
I data-model

I Defining the environment computational model & architecture
I how the environment works
I structure, behaviour, topology
I core aspects to face: concurrency, distribution

I Defining the environment programming model
I how to program the environment

9

Outline

Programming Agents’ Environment
Fundamentals
Existing approaches
Artifacts and CArtAgO
CArtAgO and Agents (E-A)
Conclusions and wrap-up

10

Basic Level Overview

actions

percepts

SIMULATED

WORLD

OR

INTERFACE

OR

WRAPPER TO

EXISTING

TECHNOLOGY

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

MAS ENVIRONMENT

REAL WORLD
(PHYSICAL OR

COMPUTATIONAL)

mimicking

Example:

JAVA

PLATFORMAGENTS

MAS

11

Basic Level: Features

I Environment conceptually conceived as a single monolitic block
I providing actions, generating percepts

I Environment API
I to define the set of actions and program actions computational
behaviour

I which include the generation of percepts
I typically implemented using as single object/class in OO such as
Java

I method to execute actions
I fields to store the environment state

I available in many agent programming languages/frameworks
I e.g., Jason, 2APL, GOAL, JADEX

12

An Example: Jason [Bordini et al., 2007] (without
JaCaMo)

I Flexible Java-based Environment API
I Environment base class to be specialised

I executeAction method to specify action semantics
I addPercept to generate percepts

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment

13

Example (continued): MARS Environment in Jason

public class MarsEnv extends Environment {
 private MarsModel model;
 private MarsView view;

 public void init(String[] args) {
 model = new MarsModel();
 view = new MarsView(model);
 model.setView(view);
 updatePercepts();
 }

 public boolean executeAction(String ag, Structure action) {
 String func = action.getFunctor();
 if (func.equals("next")) {
 model.nextSlot();
 } else if (func.equals("move_towards")) {
 int x = (int)((NumberTerm)action.getTerm(0)).solve();
 int y = (int)((NumberTerm)action.getTerm(1)).solve();
 model.moveTowards(x,y);
 } else if (func.equals("pick")) {
 model.pickGarb();
 } else if (func.equals("drop")) {
 model.dropGarb();
 } else if (func.equals("burn")) {
 model.burnGarb();
 } else {
 return false;
 }

 updatePercepts();
 return true;
 }
 ...

 ...

 /* creates the agents perception
 * based on the MarsModel */
 void updatePercepts() {

 clearPercepts();

 Location r1Loc = model.getAgPos(0);
 Location r2Loc = model.getAgPos(1);

 Literal pos1 = Literal.parseLiteral
 ("pos(r1," + r1Loc.x + "," + r1Loc.y + ")");
 Literal pos2 = Literal.parseLiteral
 ("pos(r2," + r2Loc.x + "," + r2Loc.y + ")");

 addPercept(pos1);
 addPercept(pos2);

 if (model.hasGarbage(r1Loc)) {
 addPercept(Literal.parseLiteral("garbage(r1)"));
 }

 if (model.hasGarbage(r2Loc)) {
 addPercept(Literal.parseLiteral("garbage(r2)"));
 }
 }

 class MarsModel extends GridWorldModel { ... }

 class MarsView extends GridWorldView { ... }
}

14

Example (continued): Jason Agents Playing on Mars

// mars robot 1

/* Initial beliefs */

at(P) :- pos(P,X,Y) & pos(r1,X,Y).

/* Initial goal */

!check(slots).

/* Plans */

+!check(slots) : not garbage(r1)
 <- next(slot);
 !!check(slots).
+!check(slots).

+garbage(r1) : not .desire(carry_to(r2))
 <- !carry_to(r2).

+!carry_to(R)
 <- // remember where to go back
 ?pos(r1,X,Y);
 -+pos(last,X,Y);

 // carry garbage to r2
 !take(garb,R);

 // goes back and continue to check
 !at(last);
 !!check(slots).
...

...

+!take(S,L) : true
 <- !ensure_pick(S);
 !at(L);
 drop(S).

+!ensure_pick(S) : garbage(r1)
 <- pick(garb);
 !ensure_pick(S).
+!ensure_pick(_).

+!at(L) : at(L).
+!at(L) <- ?pos(L,X,Y);
 move_towards(X,Y);
 !at(L).

15

Another Example: 2APL [Dastani, 2008]

I 2APL
I BDI-based agent-oriented programming language integrating
declarative programming constructs (beliefs, goals) and imperative
style programming constructs (events, plans)

I Java-based Environment API
I Environment base class
I implementing actions as methods

I inside action methods external events can be generated to be
perceived by agents as percepts

16

Example: Block-world Environment in 2APL

package blockworld;

public class Env extends apapl.Environment {

public void enter(String agent, Term x, Term y, Term c){...}

public Term sensePosition(String agent){...}

public Term pickup(String agent){...}

public void north(String agent){...}

 ...

}

17

2APL Agents in the block-world

BeliefUpdates:
 { bomb(X,Y) } RemoveBomb(X,Y){ not bomb(X,Y) }
 { true } AddBomb(X,Y) { bomb(X,Y) }
 { carry(bomb) } Drop() { not carry(bomb)}
 { not carry(bomb) } PickUp() { carry(bomb) }

Beliefs:
 start(0,1).
 bomb(3,3).
 clean(blockWorld) :-
 not bomb(X,Y) , not carry(bomb).

Plans:
 B(start(X,Y)) ;
 @blockworld(enter(X, Y, blue), L)

Goals:
 clean(blockWorld)

PG-rules:
 clean(blockWorld) <- bomb(X, Y) |
 {
 goto(X, Y);
 @blockworld(pickup(), L1);
 PickUp();
 RemoveBomb(X, Y);
 goto(0, 0);
 @blockworld(drop(), L2);
 Drop()
 }
...

...

PC-rules:
 goto(X, Y) <- true |
 {
 @blockworld(sensePosition(), POS);
 B(POS = [A,B]);
 if B(A > X) then
 { @blockworld(west(), L);
 goto(X, Y)
 }
 else if B(A < X) then
 { @blockworld(east(), L);
 goto(X, Y)
 }
 else if B(B > Y) then
 { @blockworld(north(), L);
 goto(X, Y)
 }
 else if B(B < Y) then
 { @blockworld(south(), L);
 goto(X, Y)
 }
 }

 ...

18

Environment Interface Standard – EIS Initiative

I Recent initiative supported by main APL research groups [?]
I GOAL, 2APL, GOAL, JADEX, JASON

I Goal of the initiative
I design and develop a generic environment interface standard

I a standard to connect agents to environments
I ... environments such as agent testbeds, commercial applications,

video games..

I Principles
I wrapping already existing environments
I creating new environments by connecting already existing apps
I creating new environments from scratch

I Requirements
I generic
I reuse

19

EIS Meta-Model

I By means of the Env. Interface agents perform actions and collect
percepts

I actually actions/percepts are issued to controllable entities in
environment model

I represent the agent bodies, with effectors and sensors

20

Environment Interface Features

I Interface functions
I attaching, detaching, and notifying observers (software design
pattern);

I registering and unregistering agents;
I adding and removing entities;
I managing the agents-entities-relation;
I performing actions and retrieving percepts;
I managing the environment

I Interface Intermediate language
I to facilitate data-exchange
I encoding percepts, actions, events

21

Advanced Level Overview

I Vision: environment as a first-class abstraction in
MAS [Weyns et al., 2007, Ricci et al., 2011]

I application or endogenous environments, i.e. that environment
which is an explicit part of the MAS

I providing an exploitable design & programming abstraction to build
MAS applications

I Outcome
I distinguishing clearly between the responsibilities of agent and
environment

I separation of concerns
I improving the engineering practice

22

Three Support Levels [Weyns et al., 2007]

I Basic interface support
I Abstraction support level
I Interaction-mediation support level

23

Basic Interface Support

I The environment enables agents to access the deployment context
I i.e. the hardware and software and external resources with which
the MAS interacts

24

Abstraction Support

I Bridges the conceptual gap between the agent abstraction and
low-level details of the deployment context

I shields low-level details of the deployment context

25

Interaction-Mediation Support

I Regulate the access to shared resources
I Mediate interaction between agents

26

Environment Definition Revised

Environment definition revised [Weyns et al., 2007]
The environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both the
interaction among agents and the access to resources

27

Research on Environments for MAS

I Environments for Multi-Agent Systems research field / E4MAS
workshop series [Weyns et al., 2005]

I different themes and issues (see JAAMAS Special
Issue [Weyns and Parunak, 2007] for a good survey)

I mechanisms, architectures, infrastructures,
applications [Platon et al., 2007, Weyns and Holvoet, 2007,
Weyns and Holvoet, 2004, Viroli et al., 2007]

I the main perspective is (agent-oriented) software engineering
I Focus of this tutorial: the role of the environment abstraction in

MAS programming
I environment programming

28

Environment Programming

I Environment as first-class programming
abstraction [Ricci et al., 2011]

I software designers and engineers perspective
I endogenous environments (vs. exogenous one)
I programming MAS =
programming Agents + programming Environment

I ..but this will be extended to include OOP in next part

I Environment as first-class runtime abstraction for agents
I agent perspective
I to be observed, used, adapted, constructed, ...

I Defining computational and programming frameworks/models also
for the environment part

29

Computational Frameworks for Environment
Programming: Issues

I Defining the environment interface
I actions, percepts, data model
I contract concept, as defined in software engineering contexts
(Design by Contract)

I Defining the environment computational model
I environment structure, behaviour

I Defining the environment distribution model
I topology

30

Programming Models for the Environment: Desiderata

I Abstraction
I keeping the agent abstraction level e.g. no agents sharing and
calling OO objects

I effective programming models for controllable and observable
computational entities

I Modularity
I away from the monolithic and centralised view

I Orthogonality
I wrt agent models, architectures, platforms
I support for heterogeneous systems

31

Programming Models for the Environment: Desiderata

I Dynamic extensibility
I dynamic construction, replacement, extension of environment parts
I support for open systems

I Reusability
I reuse of environment parts for different kinds of applications

32

Existing Computational Frameworks

I AGRE / AGREEN / MASQ [Stratulat et al., 2009]
I AGRE – integrating the AGR (Agent-Group-Role) organisation
model with a notion of environment

I Environment used to represent both the physical and social part of
interaction

I AGREEN / MASQ – extending AGRE towards a unified
representation for physical, social and institutional environments

I Based on MadKit platform [Gutknecht and Ferber, 2000]
I GOLEM [Bromuri and Stathis, 2008]

I Logic-based framework to represent environments for situated
cognitive agents

I composite structure containing the interaction between cognitive
agents and objects

I A&A and CArtAgO [Ricci et al., 2011]
I introducing a computational notion of artifact to design and
implement agent environments

33

A&A and CArtAgO

Outline

Programming Agents’ Environment
Fundamentals
Existing approaches
Artifacts and CArtAgO
CArtAgO and Agents (E-A)
Conclusions and wrap-up

35

Agents and Artifacts (A&A) Conceptual Model:
Background Human Metaphor

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

36

A&A Basic Concepts [Omicini et al., 2008]

I Agents
I autonomous, goal-oriented pro-active entities
I create and co-use artifacts for supporting their activities

I besides direct communication

I Artifacts
I non-autonomous, function-oriented, stateful entities

I controllable and observable
I modelling the tools and resources used by agents

I designed by MAS programmers

I Workspaces
I grouping agents & artifacts
I defining the topology of the computational environment

37

A&A Programming Model Features [Ricci et al., 2007b]

I Abstraction
I artifacts as first-class resources and tools for agents

I Modularisation
I artifacts as modules encapsulating functionalities, organized in
workspaces

I Extensibility and openness
I artifacts can be created and destroyed at runtime by agents

I Reusability
I artifacts (types) as reusable entities, for setting up different kinds of
environments

38

A&A Meta-Model in More Detail [Ricci et al., 2011]

Artifact

Operation

Observable
Event

generate

Agentuse

perceive

Workspace

Environment

Observable
Property

update

perceive

observe

Manual

has

consult

link

create

dispose

link

join

quit

39

Artifact Abstract Representation

OperationX(Params)

...

ObsPropName(Args)

...

SIGNALS

USAGE

INTERFACE

OBSERVABLE

PROPERTIES

OperationY(Params)

...

LINK

INTERFACE

OPERATIONS

40

A World of Artifacts

put

n_items 0

max_items 100

get

a bounded buffer

inc

count 5

reset

a counter

switch

state true

a flag

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

postEvent

registerForEvs

clearEvents

an event service

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

in

rd

out

a tuple space

41

A Simple Taxonomy

I Individual or personal artifacts
I designed to provide functionalities for a single agent use

I e.g. an agenda for managing deadlines, a library...

I Social artifacts
I designed to provide functionalities for structuring and managing the
interaction in a MAS

I coordination artifacts [Omicini et al., 2004], organisation artifacts,
...

I e.g. a blackboard, a game-board,...

I Boundary artifacts
I to represent external resources/services

I e.g. a printer, a Web Service
I to represent devices enabling I/O with users

I e.g GUI, console, etc.

42

Actions and Percepts in Artifact-Based Environments

I Explicit semantics defined by the (endogenous)
environment [Ricci et al., 2010b]

I success/failure semantics, execution semantics
I defining the contract (in the SE acceptation) provided by the
environment

actions ←→ artifacts’ operation

the action repertoire is given by the dynamic set of operations provided
by the overall set of artifacts available in the workspace can be changed
by creating/disposing artifacts
I action success/failure semantics is defined by operation semantics

percepts ←→ artifacts’ observable properties + signals

properties represent percepts about the state of the environment signals
represent percepts concerning events signalled by the environment

43

Interaction Model: Use

op(Params)

ValuePropName

ValuePropName
...

...

AGENT

op(parms)
action

I Performing an action corresponds to triggering the execution of an
operation

I acting on artifact’s usage interface

44

Interaction Model: Operation execution

OPERATION EXECUTION
op(Params)

ValuePropName
Value
...

...

SIGNALS OBS PROPERTIES
CHANGE

AGENT

op(parms)
action

action completion
- with success or failure -

I a process structured in one or multiple transactional steps
I asynchronous with respect to agent

I ...which can proceed possibly reacting to percepts and executing
actions of other plans/activities

I operation completion causes action completion
I action completion events with success or failure, possibly with
action feedbacks

45

Interaction Model: Observation

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

focus

AGENT
OBSERVER

I Agents can dynamically select which artifacts to observe
I predefined focus/stopFocus actions

46

Interaction Model: Observation

AGENT
OBSERVER

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

use

I By focussing an artifact
I observable properties are mapped into agent dynamic knowledge
about the state of the world, as percepts

I e.g. belief base
I signals are mapped as percepts related to observable events

47

Artifact Linkability

WSP-X WSP-Y

linkedOp

I Basic mechanism to enable inter-artifact interaction
I linking artifacts through interfaces (link interfaces)

I operations triggered by an artifact over an other artifact
I Useful to design & program distributed environments

I realised by set of artifacts linked together
I possibly hosted in different workspaces

48

Artifact Manual

I Agent-readable description of artifact’s...
I ...functionality

I what functions/services artifacts of that type provide
I ...operating instructions

I how to use artifacts of that type

I Towards advanced use of artifacts by intelligent
agents [Piunti et al., 2008]

I dynamically choosing which artifacts to use to accomplish their
tasks and how to use them

I strong link with Semantic Web research issues
I Work in progress

I defining ontologies and languages for describing the manuals

49

CArtAgO

I Common ARtifact infrastructure for AGent Open environment
(CArtAgO) [Ricci et al., 2009]

I Computational framework / infrastructure to implement and run
artifact-based environment [Ricci et al., 2007c]

I Java-based programming model for defining artifacts
I set of basic API for agent platforms to work within artifact-based
environment

I Distributed and open MAS
I workspaces distributed on Internet nodes

I agents can join and work in multiple workspace at a time
I Role-Based Access Control (RBAC) security model

I Open-source technology
I available at http://cartago.sourceforge.net

50

http://cartago.sourceforge.net

Outline

Programming Agents’ Environment
Fundamentals
Existing approaches
Artifacts and CArtAgO
CArtAgO and Agents (E-A)
Conclusions and wrap-up

51

Integration with Agent Languages and Platforms

I Integration with existing agent platforms [Ricci et al., 2008]
I by means of bridges creating an action/perception interface and
doing data binding

I Outcome
I developing open and heterogenous MAS
I introducing a further perspective on interoperability besides the
ACL’s one

I sharing and working in a common work environment
I common object-oriented data-model

52

A&A in JaCaMo Platform

I Integration of CArtAgO with Jason language/platform
I Mapping

I actions
I Jason agent external actions are mapped onto artifacts’ operations

I percepts
I artifacts’ observable properties are mapped onto agent beliefs
I artifacts’ signals are mapped as percepts related to observable events

I data-model
I Jason data-model is extended to manage also (Java) objects

53

Example 1: A Simple Counter Artifact

class Counter extends Artifact {

 void init(){
 defineObsProp("count",0);
 }

 @OPERATION void inc(){
 ObsProperty p = getObsProperty("count");
 p.updateValue(p.intValue() + 1);
 signal("tick");
 }
}

inc

count 5

I Some API spots
I Artifact base class
I @OPERATION annotation to mark artifact?s operations
I set of primitives to work define/update/.. observable properties
I signal primitive to generate signals

54

Example 1: User and Observer Agents

!create_and_use.

+!create_and_use : true
 <- !setupTool(Id);
 // use
 inc;
 // second use specifying the Id
 inc [artifact_id(Id)].

// create the tool
+!setupTool(C): true
 <- makeArtifact("c0","Counter",C).

!observe.

+!observe : true
 <- ?myTool(C); // discover the tool
 focus(C).

+count(V)
 <- println(“observed new value: “,V).

+tick [artifact_name(Id,”c0”)]
 <- println(“perceived a tick”).

+?myTool(CounterId): true
 <- lookupArtifact(“c0”,CounterId).

-?myTool(CounterId): true
 <- .wait(10);
 ?myTool(CounterId).

OBSERVER(S)USER(S)

I Working with the shared counter

55

Pre-defined Artifacts

I Each workspace contains by default a predefined set of artifacts
I providing core and auxiliary functionalities
I i.e. a pre-defined repertoire of actions available to agents...

I Among the others
I workspace, type: cartago.WorkspaceArtifact

I functionalities to manage the workspace, including security
I operations: makeArtifact, lookupArtifact, focus,...

I node, type: cartago.NodeArtifact
I core functionalities related to a node
I operations: createWorkspace, joinWorkspace, ...

I console, type cartago.tools.Console
I operations: println,...

I blackboard, type cartago.tools.TupleSpace
I operations: out, in, rd, ...

I

56

Example 2: Coordination Artifacts – A Bounded Buffer

public class BoundedBuffer extends Artifact {
 private LinkedList<Item> items;
 private int nmax;

 void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("n_items",0);
 this.nmax = nmax;
 }

 @OPERATION void put(Item obj){
 await("bufferNotFull");
 items.add(obj);

getObsProperty("n_items").updateValue(items.size());
 }

 @OPERATION void get(OpFeedbackParam<Item> res) {
 await("itemAvailable");
 Item item = items.removeFirst();

res.set(item);
getObsProperty("n_items").updateValue(items.size());

 }

 @GUARD boolean itemAvailable(){ return items.size() > 0; }

 @GUARD boolean bufferNotFull(Item obj){ return items.size() < nmax; }
}

put

n_items 5

get

I Basic operation features
I output parameters to represent action feedbacks
I long-term operations, with a high-level support for synchronization
(await primitive, guards)

57

Example 2: Producers and Consumers

item_to_produce(0).
!produce.

+!produce: true
 <- !setupTools(Buffer);
 !produceItems.

+!produceItems : true
 <- ?nextItemToProduce(Item);
 put(Item);
 !!produceItems.

+?nextItemToProduce(N) : true
 <- -item_to_produce(N);
 +item_to_produce(N+1).

+!setupTools(Buffer) : true
 <- makeArtifact("myBuffer","BoundedBuffer",
 [10],Buffer).

-!setupTools(Buffer) : true
 <- lookupArtifact("myBuffer",Buffer).

!consume.

+!consume: true
 <- ?bufferReady;
 !consumeItems.

+!consumeItems: true
 <- get(Item);
 !consumeItem(Item);
 !!consumeItems.

+!consumeItem(Item) : true
 <- .my_name(Me);
 println(Me,": ",Item).

+?bufferReady : true
 <- lookupArtifact("myBuffer",_).
-?bufferReady : true
 <-.wait(50);
 ?bufferReady.

PRODUCERS CONSUMERS

58

Remarks

I Process-based operation execution semantics
I action/operation execution can be long-term
I action/operation execution can overlap
I key feature for implementing coordination functionalities

I Operation with output parameters as action feedbacks

59

Action Execution & Blocking Behaviour

I Given the action/operation map, by executing an action the
intention/activity is suspended until the corresponding operation
has completed or failed

I action completion events generated by the environment and
automatically processed by the agent/environment platform bridge

I no need of explicit observation and reasoning by agents to know if
an action succeeded

I However the agent execution cycle is not blocked!
I the agent can continue to process percepts and possibly execute
actions of other intentions

60

Example 3: Internal Processes – A Clock

public class Clock extends Artifact {

 boolean working;
 final static long TICK_TIME = 100;

 void init(){ working = false; }

 @OPERATION void start(){
 if (!working){
 working = true;
 execInternalOp("work");
 } else {
 failed("already_working");
 }
 }

 @OPERATION void stop(){ working = false; }

 @INTERNAL_OPERATION void work(){
 while (working){
 signal("tick");
 await_time(TICK_TIME);
 }
 }
}

!test_clock.

+!test_clock
 <- makeArtifac("myClock","Clock",[],Id);
 focus(Id);
 +n_ticks(0);
 start;
 println("clock started.").

@plan1
+tick: n_ticks(10)
 <- stop;
 println("clock stopped.").

@plan2 [atomic]
+tick: n_ticks(N)
 <- -+n_ticks(N+1);
 println("tick perceived!").

CLOCK CLOCK USER AGENT

I Internal operations
I execution of operations triggered by other operations
I implementing controllable processes

61

Example 4: Artifacts for User I/O – GUI Artifacts

setValue

value 16.0

user

ok

closed

agent

I Exploiting artifacts to enable interaction between human users and
agents

62

Example 4: Agent and User Interaction

public class MySimpleGUI extends GUIArtifact {
 private MyFrame frame;

 public void setup() {
 frame = new MyFrame();

 linkActionEventToOp(frame.okButton,"ok");
 linkKeyStrokeToOp(frame.text,"ENTER","updateText");
 linkWindowClosingEventToOp(frame, "closed");
 defineObsProperty("value",getValue());
 frame.setVisible(true);
 }

 @INTERNAL_OPERATION void ok(ActionEvent ev){
 signal("ok");
 }

 @OPERATION void setValue(double value){
 frame.setText(""+value);
 updateObsProperty("value",value);
 }
 ...

 @INTERNAL_OPERATION
 void updateText(ActionEvent ev){
 updateObsProperty("value",getValue());
 }

 private int getValue(){
 return Integer.parseInt(frame.getText());
 }

 class MyFrame extends JFrame {...}
}

!test_gui.

+!test_gui
 <- makeArtifact("gui","MySimpleGUI",Id);
 focus(Id).

+value(V)
 <- println("Value updated: ",V).

+ok : value(V)
 <- setValue(V+1).

+closed
 <- .my_name(Me);
 .kill_agent(Me).

GUI ARTIFACT USER ASSISTANT AGENT

63

Other Features

I Other CArtAgO features not discussed in this lecture
I linkability

I executing chains of operations across multiple artifacts
I multiple workspaces

I agents can join and work in multiple workspaces, concurrently
I including remote workspaces

I RBAC security model
I workspace artifact provides operations to set/change the access

control policies of the workspace, depending on the agent role
I ruling agents’ access and use of artifacts of the workspace

I ...

I See CArtAgO papers and manuals for more information

64

A&A and CArtAgO: Some Research Explorations

I Cognitive stigmergy based on artifact
environments [Ricci et al., 2007a]

I cognitive artifacts for knowledge representation and
coordination [Piunti and Ricci, 2009]

I Artifact-based environments for argumentation [Oliva et al., 2010]
I Including A&A in AOSE methodology [Molesini et al., 2005]
I Defining a Semantic (OWL-based) description of artifact

environments (CArtAgO-DL)
I JaSa project = JASDL + CArtAgO-DL

I ...

65

Applying CArtAgO and JaCaMo

I Using JaCaMo for building real-world applications and
infrastructures

I Some examples
I JaCa-Android

I implementing mobile computing applications on top of the Android
platform using JaCa [Santi et al., 2011]

I http://jaca-android.sourceforge.net
I JaCa-WS / CArtAgO-WS

I building SOA/Web Services applications using
JaCa [Ricci et al., 2010a]

I http://cartagows.sourceforge.net
I JaCa-Web

I implementing Web 2.0 applications using JaCa
I http://jaca-web.sourceforge.net

66

http://jaca-android.sourceforge.net
http://cartagows.sourceforge.net
http://jaca-web.sourceforge.net

Outline

Programming Agents’ Environment
Fundamentals
Existing approaches
Artifacts and CArtAgO
CArtAgO and Agents (E-A)
Conclusions and wrap-up

67

Wrap-up

I Environment programming
I environment as a programmable part of the MAS
I encapsulating and modularising functionalities useful for agents’
work

I Artifact-based environments
I artifacts as first-class abstraction to design and program complex
software environments

I usage interface, observable properties / events, linkability
I artifacts as first-order entities for agents

I interaction based on use and observation
I agents dynamically co-constructing, evolving, adapting their world

I CArtAgO computational framework
I programming and executing artifact-based environments
I integration with heterogeneous agent platforms

68

Multi-Agent Oriented Programming
The JaCaMo Platform

O. Boissier1 R.H. Bordini2 J.F. Hübner3 A. Ricci4

1. Mines Saint-Etienne (ENSMSE), Saint Etienne, France

2 Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

3. Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

4. University of Bologna (UNIBO), Bologna, Italy

September 2016

69

http://www.emse.fr/~boissier/
https://www.inf.pucrs.br/r.bordini/Rafael_Bordini/Welcome.html
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/

Bibliography I

Bordini, R., Hübner, J., and Wooldridge, M. (2007).
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Wiley-Interscience.

Bromuri, S. and Stathis, K. (2008).
Situating Cognitive Agents in GOLEM.
In Weyns, D., Brueckner, S., and Demazeau, Y., editors, Engineering
Environment-Mediated Multi-Agent Systems, volume 5049 of LNCS, pages
115–134. Springer Berlin / Heidelberg.

Dastani, M. (2008).
2APL: a practical agent programming language.
Autonomous Agent and Multi-Agent Systems, 16(3):214–248.

Gutknecht, O. and Ferber, J. (2000).
The MADKIT agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55.

70

Bibliography II

Molesini, A., Omicini, A., Denti, E., and Ricci, A. (2005).
SODA: A roadmap to artefacts.
In Dikenelli, O., Gleizes, M.-P., and Ricci, A., editors, 6th International
Workshop “Engineering Societies in the Agents World” (ESAW’05), pages
239–252, Kuşadası, Aydın, Turkey. Ege University.

Oliva, E., McBurney, P., Omicini, A., and Viroli, M. (2010).
Argumentation and artifacts for negotiation support.
International Journal of Artificial Intelligence, 4(S10):90–117.
Special Issue on Negotiation and Argumentation in Artificial Intelligence.

Omicini, A., Ricci, A., and Viroli, M. (2008).
Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., and Tummolini, L. (2004).
Coordination artifacts: Environment-based coordination for intelligent agents.
In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS’04), volume 1, pages 286–293, New York, USA. ACM.

71

Bibliography III

Piunti, M. and Ricci, A. (2009).

Cognitive artifacts for intelligent agents in mas: Exploiting relevant information
residing in environments.

In Knowledge Representation for Agents and Multi-Agent Systems (KRAMAS
2008), volume 5605 of LNAI. Springer.

Piunti, M., Ricci, A., Braubach, L., and Pokahr, A. (2008).

Goal-directed interactions in artifact-based mas: Jadex agents playing in
CARTAGO environments.

In Proc. of the 2008 IEEE/WIC/ACM Int. Conf. on Web Intelligence and
Intelligent Agent Technology (IAT’08), volume 2. IEEE Computer Society.

Platon, E., Mamei, M., Sabouret, N., Honiden, S., and Parunak, H. V. (2007).

Mechanisms for environments in multi-agent systems: Survey and
opportunities.

Autonomous Agents and Multi-Agent Systems, 14(1):31–47.

72

Bibliography IV

Ricci, A., Denti, E., and Piunti, M. (2010a).
A platform for developing SOA/WS applications as open and heterogeneous
multi-agent systems.
Multiagent and Grid Systems International Journal (MAGS), Special Issue
about “Agents, Web Services and Ontologies: Integrated Methodologies” .
To Appear.

Ricci, A., Omicini, A., Viroli, M., Gardelli, L., and Oliva, E. (2007a).
Cognitive stigmergy: Towards a framework based on agents and artifacts.
In Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments for
MultiAgent Systems III, volume 4389 of LNAI, pages 124–140. Springer.

Ricci, A., Piunti, M., Acay, L. D., Bordini, R., Hubner, J., and Dastani, M.
(2008).
Integrating Artifact-Based Environments with Heterogeneous
Agent-Programming Platforms.
In Proceedings of AAMAS-08.

73

Bibliography V

Ricci, A., Piunti, M., and Viroli, M. (2011).

Environment programming in multi-agent systems: an artifact-based
perspective.

Autonomous Agents and Multi-Agent Systems, 23:158–192.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009).

Environment programming in CArtAgO.

In Bordini, R. H., Dastani, M., Dix, J., and El Fallah-Seghrouchni, A., editors,
Multi-Agent Programming: Languages, Platforms and Applications, Vol. 2,
pages 259–288. Springer Berlin / Heidelberg.

Ricci, A., Santi, A., and Piunti, M. (2010b).

Action and perception in multi-agent programming languages: From exogenous
to endogenous environments.

In In Proceedings of International Workshop on Programming Multi-Agent
Systems (ProMAS-8).

74

Bibliography VI

Ricci, A., Viroli, M., and Omicini, A. (2007b).
The A&A programming model & technology for developing agent environments
in MAS.
In Dastani, M., El Fallah Seghrouchni, A., Ricci, A., and Winikoff, M., editors,
Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–109.
Springer Berlin / Heidelberg.

Ricci, A., Viroli, M., and Omicini, A. (2007c).
CArtAgO: A framework for prototyping artifact-based environments in MAS.
In Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments for
MultiAgent Systems III, volume 4389 of LNAI, pages 67–86. Springer.
3rd International Workshop (E4MAS 2006), Hakodate, Japan, 8 May 2006.
Selected Revised and Invited Papers.

Russell, S. and Norvig, P. (2003).
Artificial Intelligence, A Modern Approach (2nd ed.).
Prentice Hall.

75

Bibliography VII

Santi, A., Guidi, M., and Ricci, A. (2011).
Jaca-android: An agent-based platform for building smart mobile applications.
In Dastani, M., Fallah-Seghrouchni, A. E., Hübner, J., and Leite, J., editors,
Languages, Methodologies and Development Tools for Multi-agent systems,
volume 6822 of LNAI. Springer Verlag.

Stratulat, T., Ferber, J., and Tranier, J. (2009).
MASQ: towards an integral approach to interaction.
In AAMAS (2), pages 813–820.

Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., and Zambonelli, F. (2007).
Infrastructures for the environment of multiagent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):49–60.

Weyns, D. and Holvoet, T. (2004).
A formal model for situated multi-agent systems.
Fundamenta Informaticae, 63(2-3):125–158.

76

Bibliography VIII
Weyns, D. and Holvoet, T. (2007).
A reference architecture for situated multiagent systems.
In Environments for Multiagent Systems III, volume 4389 of LNCS, pages
1–40. Springer Berlin / Heidelberg.

Weyns, D., Omicini, A., and Odell, J. J. (2007).
Environment as a first-class abstraction in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

Weyns, D. and Parunak, H. V. D., editors (2007).
Special Issue on Environments for Multi-Agent Systems, volume 14 (1) of
Autonomous Agents and Multi-Agent Systems. Springer Netherlands.

Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and Ferber, J. (2005).
Environments for multiagent systems: State-of-the-art and research challenges.
In Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and Ferber, J.,
editors, Environment for Multi-Agent Systems, volume 3374, pages 1–47.
Springer Berlin / Heidelberg.

Wooldridge, M. (2002).
An Introduction to Multi-Agent Systems.
John Wiley & Sons, Ltd.

77

	Programming Agents' Environment
	Fundamentals
	Existing approaches
	Artifacts and CArtAgO
	CArtAgO and Agents (E-A)
	Conclusions and wrap-up

