
Multi-Agent Oriented Programming

O. Boissier

Univ. Lyon, IMT Mines Saint-Etienne, LaHC UMR CNRS 5516, France

in tight collaboration with R.H. Bordini2, J.F. Hübner3, A. Ricci4

2 Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
3 Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

4 University of Bologna (UNIBO), Bologna, Italy

Winter 2019

UMR • CNRS • 5516 • SAINT-ETIENNE

http://www.emse.fr/~boissier/
https://www.inf.pucrs.br/r.bordini/Rafael_Bordini/Welcome.html
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/

Multi-Agent Oriented Programming
Programming Agents

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

3

Literature
Fundamentals

Books: [Bordini et al., 2005], [Bordini et al., 2009]

Proceedings: ProMAS, DALT, LADS, EMAS, AGERE, ...

Surveys: [Bordini et al., 2006], [Fisher et al., 2007] ...

Languages of historical importance: Agent0 [Shoham, 1993],
AgentSpeak(L) [Rao, 1996], MetateM [Fisher, 2005],
3APL [Hindriks et al., 1997],
Golog [Giacomo et al., 2000]

Other prominent languages:
Jason [Bordini et al., 2007], Jadex [Pokahr et al., 2005],
2APL [Dastani, 2008], GOAL [Hindriks, 2009],
JACK [Winikoff, 2005], JIAC, AgentFactory

But many others languages and platforms...

4

Some Languages and Platforms
Fundamentals

Jason (Hübner, Bordini, ...); 3APL and 2APL (Dastani, van Riemsdijk,
Meyer, Hindriks, ...); Jadex (Braubach, Pokahr); MetateM (Fisher,
Guidini, Hirsch, ...); ConGoLog (Lesperance, Levesque, ... / Boutilier –
DTGolog); Teamcore/ MTDP (Milind Tambe, ...); IMPACT
(Subrahmanian, Kraus, Dix, Eiter); CLAIM (Amal El
Fallah-Seghrouchni, ...); GOAL (Hindriks); BRAHMS (Sierhuis, ...);
SemantiCore (Blois, ...); STAPLE (Kumar, Cohen, Huber); Go! (Clark,
McCabe); Bach (John Lloyd, ...); MINERVA (Leite, ...); SOCS
(Torroni, Stathis, Toni, ...); FLUX (Thielscher); JIAC (Hirsch, ...);
JADE (Agostino Poggi, ...); JACK (AOS); Agentis (Agentis Software);
Jackdaw (Calico Jack); simpAL, ALOO (Ricci, ...);...

5

Theories, Models, Architectures
Fundamentals

I Agents are used to solve problems (e.g. to find solutions, to take
decisions, to act on the environment)

I The characteristics of the problem influence the way the agents are
built
; we then talk about agent architectures

I It may be the case that some architectures are designed using
general principles
; we then talk about agent models

I Some of these models have a theory associated with them that
allows the verification of some properties
; we then talk about agent theories

Several agent architectures, models and theories exist in the literature!!!

6

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

7

Analysis Grid
Agent Models Panorama

Agent models depend on:
I the type of inputs that they reason from (external factor)
I the control cycle connecting inputs to actions (coupling)

External factor

Coupling

, ,

, ,

X

Situated
agent

Social
agent

Organized
agent

Reactive
agent

Hybrid
agent

Deliberative
agent

8

External Factor Dimension
Agent Models Panorama

I Situated Agents
I agents that reason about themselves and about their environment

I Social Agents
I agents that reason about themselves, about their environment and

about the interactions with others
I Organized Agents

I agents that reason about themselves, about their environment and
about the interactions with others and about the organizations (e.g.
social structures, norms) enforcing these interactions

9

Coupling Dimension
Agent Models Panorama

I Reactive Agent
I tight coupling between perception of the external factors with action

I Deliberative Agent
I loose coupling between perception and actions: agents deliberate on

the actions to execute from their perception of the external factors
and from their goals

I Hybrid Agent
I agents that are mixing reactivity and deliberation

10

Reactive Agent Models
Agent Models Panorama/ Coupling Dimension

I The process cycle of an agent is a closed loop between "execute"
and "see" (Stimulus/Response)

I reaction to the evolution of the environment
I No explicit representation of the environment, of the other agents,

of its skills,
I Decisions are done without reference to the past (no history), to

the futur (no planning)

see execute

Environnement

Agent

11

Reactive Agent models
Agent Models Panorama/ Coupling Dimension

Reactive approach arises in opposition to the symbolic reasoning model
(AI). Several approaches that are based on :
I behaviours

I [Brooks, 1986], (Steels 89), (robotic)
I (Drogoul 93) (ethology)

I interactions
I (Demazeau 93) (image analysis, cartography, ...)
I (Bura 91) (games)

I situations
I (Agre 87) (games)
I (Wavish 90) (design, manufacturing)

12

Reactive Agent models
Agent Models Panorama/ Coupling Dimension

I Example of control cycle of a reactive agent (implemented as a set
of condition/action rules):

condition-action rules
set of percepts
do {

percepts := see();
state := interpret-inputs(percepts);
rule := match(state,rules);
execute(rule[action]);

} while (true);

13

Deliberative Agent models
Agent Models Panorama/ Coupling Dimension

I The process cycle of an agent introduces a "deliberate" function
between "see" and "execute" in order to choose the "right" action

I Explicit Representation of the environment, of the other agents, of
its skills, ...

I History management, ...

see execute

Environnement

Agent deliberate

state

14

Deliberative Agent models
Agent Models Panorama/ Coupling Dimension

I Goal-based Agents
I Rich internal state
I Can anticipate the effects of their actions (e.g. Planning)
I Take those actions expected to lead toward achievement of goals
I Capable of reasoning and deducing properties of the world

(Knowledge representation)
I Utility-based Agent

I Decision Theory + Probabilities
I Use of utility function that maps state (or state sequences) into

real numbers
I Permits more fine-grained reasoning about what can be achieved,

what are the trade-offs, conflicting goals, etc

15

Hybrid Agent Models
Agent Models Panorama/ Coupling Dimension

Hybrid Agent’s Model: Reactive and Deliberative Agent
I Reactive agents are too simple - they work well in some scenarios,

but they fail to solve complex problems
I Deliberative agents are too complex - they need too much time to

deliberate, they fail in very dynamic environments
I The reactive and deliberative behaviors are organized in layers
I Examples: Touring Machines [Ferguson, 1995],

InterRaP[Müller and Pischel, 1994],

16

Situated Agent
Agent Models Panorama

I Reactive agents: the subsumption architecture [Brooks, 1986]
I Deliberative agents: the BDI model and the PRS architecture
I Hybrid agents: Touring Machines [Ferguson, 1995]

I Reason about themselves and about their environment
I We need to model the environment (subject of the Environment

course)
I Our case study:

I the agents move on a 2D grid
I there are obstacles blocking their movements
I an agent should find a path to a task, to execute it, and then to

move on to another task

I Note: movement on a grid stands for real movement (e.g., robots)
or virtual movement (e.g., searching on Internet)

17

Case study
Agent Models Panorama/ Situated Agent

task

duration=5
deadline=20
reward=10 what

to do?

task

duration=10
deadline=20

reward=5

18

The Subsumption Architecture
Agent Models Panorama/ Situated Agent/ Reactive agents

I Agent’s decision making is realized through a set of tasks
accomplishing behaviors.

I A behavior continually takes perceptual inputs and maps them to
an action to perform (finite state machines, no symbolic reasoning,
no symbolic representation)

I Many behaviors can fire simultaneously. In order to choose between
them, use of a subsumption hierarchy, with the behaviors arranged
into layers.
A higher layer has priority on lower layers (inhibition)

19

The Subsumption Architecture
Agent Models Panorama/ Situated Agent/ Reactive agents

Behaviour 2

Behaviour 1

Behaviour 0
Actuators

sensors

Each layer can be incrementally added
to the existing architecture.

Each layer is a set of modules (FSM) which sends messages to each other
without central control.
Inputs to modules can be suppressed and Outputs can be inhibited by wires
terminating from other modules for a determined time. (subsumption)

i
3

s
10

20

The Subsumption Architecture
Agent Models Panorama/ Situated Agent/ Reactive agents

task

duration=5
deadline=20
reward=10

•  sense my
surroundings
•  activate appropriate
behaviors
•  let the most
important behavior act

task

duration=10
deadline=20

reward=5

21

The Subsumption Architecture
Agent Models Panorama/ Situated Agent/ Reactive agents

I Does it work? The agents are very simple, there is no symbolic
reasoning or representation of their environment...

I It works if there are many agents: “the intelligence is in the system,
not in the entities composing it”.

I (Steels 89) used this architecture in a scenario very similar with our
case study:
I robots have to collect samples of precious rock (unknown location)

and bring them back to a mothership spacecraft.
I cooperation without direct communication : through the

environment.
I gradient field with a signal generated by the mothership
I radioactive crumbs are picked up, dropped and detected by robots.

22

The Subsumption Architecture
Agent Models Panorama/ Situated Agent/ Reactive agents

Two sets of behaviors running in parallel:
I Handling behavior

I If I sense a sample and I don’t carry one, I pick it up.
I If I sense the vehicle-platform and I carry a sample, I drop it.
I If I carry a sample, I drop 2 crumbs.
I If I carry no sample and crumbs are detected, I pick up one crumb.

I Movement behaviors organized along a subsumption hierarchy

23

The Subsumption Architecture
Agent Models Panorama/ Situated Agent/ Reactive agents

obstacle avoidance

path attraction

exploration movement

return movement

random movement

If I am in return mode, I choose the
direction of highest gradient.

If I am in exploration mode, I
choose the direction of lowest
gradient.

If I sense an obstacle in front, I
make a random turn.

Choose randomly a direction to
move. Move in that direction.

If I am not carrying a sample and I
sense crumbs, I move towards the
highest concentration of crumbs.

24

PRS Architecture
Agent Models Panorama/ Situated Agent/ Deliberative agents

I the use of intentions in agent’s design
[Georgeff and Lansky, 1987, Bratman, 1990]

I the BDI model: an agent contains [Rao et al., 1995]
I a set of beliefs about itself and the world;
I a set of (possibly conflicting) desires
I a set of non-conflicting intentions
I reasoning mechanisms to update its beliefs, choose the desire(s) to

pursue and generate new intentions

25

PRS Architecture
Agent Models Panorama/ Situated Agent/ Deliberative agents

task1

duration=5
deadline=20
reward=10

•  Bel: task 1 at pos x, task
2 at pos y, myself at pos z
•  Des: gain rewards,
consume a minimum of
energy
•  Int: go and execute task
1

task2

duration=10
deadline=20

reward=5

26

PRS Architecture
Agent Models Panorama/ Situated Agent/ Deliberative agents

BDI Implementations:
I Procedural Reasoning System uses and supports the BDI model

[Georgeff and Lansky, 1987]
I BDI-logics - modal operators for Beliefs, Desires and Intentions

[Rao et al., 1995]
I BDI applications: Space Shuttle (Diagnosis), Sydney Airport (air

traffic control).
I BDI Agents Platform: JACK, Zeus, Jadex, Jason.

27

PRS Architecture
Agent Models Panorama/ Situated Agent/ Deliberative agents

Environment

Agent

System
Interfaces

Data
Input

Data
Output

Sensors

Effectors

Command
Generator

Monitor

Data Base
(Beliefs)

KAS
(Plans)

Interpreter
(Reasoner)

Goals
(Desires)

PQueue
(Intentions)

I The plan-recipes library (KAS) builds the procedural knowledge to
satisfy the intentions.

I A plan-recipe (KA) is defined by: a body, triggering condition to
activate a plan (Desire), a pre-condition (feasability)

28

Hybrid agents
Agent Models Panorama/ Situated Agent

I Reactive agents are too simple - they work well in some scenarios,
but they fail to solve complex problems

I Deliberative agents are too complex - they need too much time to
deliberate, they fail in very dynamic environments

I Solution: hybrid agents that are both reactive and deliberative,
depending on the situation.

I The reactive and deliberative behaviors are organized in layers ;
layered architectures.

29

Touring Machines
Agent Models Panorama/ Situated Agent/ Hybrid agents

I Constrained navigation in dynamic environments
I Consists of three activity producing layers : each layer produces

suggestions for the actions to perform.
I Reactive layer: reactive behaviour
I Planning Layer: proactive behaviour
I Modeling Layer: world updates, beliefs; it predicts conflicts between

agents and it changes the plans/goals

I Control-subsystem: chooses the active layer: certain observations
should never reach certain layers.

30

Touring Machines
Agent Models Panorama/ Situated Agent/ Hybrid agents

reaction

action

perception

control

situation-action
rules selection

plannning
Focus

of attention Planning

modeling
Focus

of attention
Explanation Prediction

Reactive behaviour

Pro-active behaviour

Modeling of the other

31

Touring Machines
Agent Models Panorama/ Situated Agent/ Hybrid agents

task1

duration=5
deadline=20
reward=10

•  Obstacle detected
à activation of reactive
and modelling layers
•  Reactive layer:
action to do = avoid
obstacle

task2

duration=10
deadline=20

reward=5

32

Touring Machines
Agent Models Panorama/ Situated Agent/ Hybrid agents

task1

duration=5
deadline=20
reward=10

•  Task detected
à activation of planning
and modelling layers
•  Planning layer:
intention = go and do task
1

task2

duration=10
deadline=20

reward=5

33

Touring Machines
Agent Models Panorama/ Situated Agent/ Hybrid agents

task1

duration=5
deadline=20
reward=10

•  Agent detected near task
1
à activation of modeling
lay
•  Modelling layer:
quit plan to achieve task 1
à activation of planning
lay

task2

duration=10
deadline=20

reward=5

34

Social Agents
Agent Models Panorama

I AOP/AgentO [Shoham, 1993]
I The InterRaP Architecture [Müller and Pischel, 1994]

I Reason about themselves, their environment and about the
interactions with other agents

I We need to model these interactions (subject of the Interaction
course)
I agent interaction is generally done by means of communication via

exchanged messages (e.g., request, inform, etc.)
I how these messages modify the internal state of an agent?

I Our case study:
I SingleTasks (ST) and CooperativeTasks (CT) that need several

agents to execute them and to divide their rewards
I agents communicate to inform each other about task positions and

to form agreements on CT execution.

35

Case Study
Agent Models Panorama/ Social Agents

ST

duration=5
deadline=20
reward=10

what task?
with

whom?

CT

duration=10
deadline=20
reward=50

needs 2
agents

36

Agent0
Agent Models Panorama/ Social Agents/ Deliberative Agent

Three main components :
I a formal language with a syntax and a semantic to describe mental

states,
I an interpreted programming language to program agents
I agentification process to convert native applications

Agent : an entity whose state is viewed as consisting of mental
components such as beliefs, capabilities, choices, and commitments,
(...) What makes any hardware or software component an agent is
precisely the fact that one has chosen to analyse and control it in these
mental terms. [Shoham, 1993]

37

Agent0
Agent Models Panorama/ Social Agents/ Deliberative Agent

Agent specified in terms of:
I a set of capabilities (things it can do)
I a set of initial beliefs
I a set of initial commitments (like intentions in BDI)
I a set of commitment rules

Key component, which determines how the agent acts, is the set of
commitment rules. Each rule contains:
I a message condition
I a mental condition
I an action

38

Agent0
Agent Models Panorama/ Social Agents/ Deliberative Agent

I If the message condition matches a message the agent has received
and the mental condition matches the beliefs of the agent, the rule
fires.

I When a rule fires, the agent becomes committed to the action.
I The operation of an agent is simply:

1. read all current messages, update beliefs and commitments
2. execute all commitments where capable of action
3. goto 1

39

Agent0
Agent Models Panorama/ Social Agents/ Deliberative Agent

I Each action is either:
I private : an internal subroutine, or
I communicative : a message sent to other agents

I Messages are constrained to be one of three types:
I request : perform an action
I unrequest : refrain from performing an action
I inform : pass an information

Request and unrequest messages typically result in a modification
of agent’s commitments.
Inform messages result in a change to the agent’s beliefs.

40

Agent0
Agent Models Panorama/ Social Agents/ Deliberative Agent

Initialize

Belief Update

Commitments
Update

Execution

Beliefs

Commitments

Abilities

Messages

Messages

41

Agent0
Agent Models Panorama/ Social Agents/ Deliberative Agent

ST

duration=5
deadline=20
reward=10

COMMIT(
(Y, REQUEST, DO(time, CT)),
(BEL
 CAN(self, CT) &
 ¬CMT(self, time))
self, DO(time, CT))

CT

duration=10
deadline=20
reward=50

needs 2
agents

INFORM CT

R
E
Q
U
E
S
T

CT

Z

YX

42

The InterRaP architecture
Agent Models Panorama/ Social Agents/ Hybrid Agent

Social Model
MBel, JGoals, JInt

Mental Model
Bel, Goals, Intentions

World Model
Beliefs

Control Unit Knowledge Base

World
Interface

S. G. P. S.

Cooperative
Planning Layer

Local Planning
Layer

Behavior
Based Layer

S. G. P. S.

S. G. P. S.

Sensors Communication Effectors

43

The InterRaP architecture
Agent Models Panorama/ Social Agents/ Hybrid Agent

44

The InterRaP architecture
Agent Models Panorama/ Social Agents/ Hybrid Agent

Si
tu

at
io

n
re

co
gn

iti
on

G
oa

l
ac

tiv
at

io
n

SIT (SIT,GOAL)

O
P

se
le

ct
io

n

OPs

Sc
he

du
lin

g

COMMIT

Ex
ec

ut
io

n

KB

SGi

SGi+1
PSi+1

COMMIT

PSi

COMMIT (SIT,GOAL)

PSi-1 SGi-1

(SIT,GOAL)

Information flow Main control flow Additional control flow

45

The InterRaP architecture
Agent Models Panorama/ Social Agents/ Hybrid Agent

CP Layer

LP Layer

BB Layer

CP Layer

LP Layer

BB Layer

CP Layer

LP Layer

BB Layer

CP Layer

LP Layer

BB Layer

CP Layer

LP Layer

BB Layer

Reactive path Local planning path
(idealized)

Cooperative path
(idealized)

Local planning path
(instance)

Cooperative path
(instance)

46

The InterRaP architecture
Agent Models Panorama/ Social Agents/ Hybrid Agent

ST

duration=5
deadline=20
reward=10

MInt(X, Y, exec CT)
Bel(CT at pos p)
Goal(exec tasks)
Int(goto CT), Int(exec
CT)
"no obstacles around"

CT

duration=10
deadline=25
reward=50

needs 2
agents

MInt(X, Y, exec CT)
Bel(CT at pos p), Bel(ST at pos q)
Goal(exec tasks)
Int(goto ST), Int(exec ST)
Int(goto CT), Int(exec CT)
"obstacles on the right-hand side"

X

Y

47

Organized agents
Agent Models Panorama

I Reason about themselves, their environment, the interactions with
other agents and the organizational structures enforcing these
interactions

I We need to model these organizational structures (subject of the
Organization course)
I many notions are used: groups, roles, norms, etc.
I e.g., a norm saying that a car must stop at the red light
I agents that violate a norm pay penalities

I Our case study:
I a norm saying that an agent is forbidden to violate a commitment

towards another to cooperatively execute a CT
I a norm saying that a tax on the reward gained is to be payed

48

B-DOING
Agent Models Panorama/ Organized agents/ Deliberative Agent

I B-DOING (Dignum 01) extends the BDI model.
I The agent’s intentions are generated based on its current beliefs

and a set of possibly conflicting goals.
I The goals are generated from:

I a set of desires: what the agent wants;
I a set of obligations: what other agents want;
I a set of norms: what is good for the society.

I B-DOING logic: an extention of BDI-logic with three new modal
operators.

49

B-DOING architecture
Agent Models Panorama/ Organized agents/ Deliberative Agent

Intention maintenance

Desires Beliefs

Intentions

Norms

Goal maintenance

Obligations Desires

Goals

50

B-DOING architecture
Agent Models Panorama/ Organized agents/ Deliberative Agent

•  Example of a control cycle of a BDOING agent
•  b : beliefs, g : desires, i : intentions, eq : event queue

 (b,g,i) := initialize();
 repeat
 options := option_generator(eq,b,g,i, oblEvents);
 selected := deliberate(options, b,g,i, oblEvents);
 i := selected ∪ i;
 execute(i);
 eq := see();
 b := update_beliefs(b,eq);
 (g,i) := drop_successful_attitudes(b,g,i);
 (g,i) := drop_impossible_attitudes(b,g,i);
 forever

51

B-DOING architecture
Agent Models Panorama/ Organized agents/ Deliberative Agent

Desire: gain max of money
Oblig: execute CT with Y
Norm: pay 5% from tasks
Bel: CT at pos p
Goal: exec CT, pay 5% of CT
Int: goto/exec CT, pay 2,5

CT

duration=10
deadline=25
reward=100

needs 2
agents

X

52

B-DOING architecture
Agent Models Panorama/ Organized agents/ Deliberative Agent

ST

duration=15
deadline=20
reward=100

Desire: gain max of money
Oblig: execute CT with Y
Norm: pay 5% from tasks
Bel: CT at pos p, ST at pos q
Goal: exec CT, pay 5% of CT
exec ST, pay 5% of ST, pay
pen
Int: goto/exec CT, pay 2,5

CT

duration=10
deadline=25
reward=100

needs 2
agents

X

53

Agent Architectures
Agent Models Panorama

I Modules Organisation:

P A

a) horizontal architecture c) layered vertical architecture
two paths

b) modular vertical architecture
one path

P
P

A

A

P : perception, A : action

I Control flow: one / several
I Data flow: broadcast, translation
I Control structure: inhibition, hierarchy, ...

54

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

55

Agent Oriented Programming
Features

I Reacting to events × long-term goals
I Course of actions depends on circumstance
I Plan failure (dynamic environments)
I Social ability
I Combination of theoretical and practical reasoning

56

Agent Oriented Programming
Fundamentals

I Use of mentalistic notions and a societal view of computation
[Shoham, 1993]

I Heavily influenced by the BDI architecture and reactive planning
systems [Bratman et al., 1988]

57

BDI architecture
(the mentalistic view)

BDI architecture
(the mentalistic view)

Beliefs

Desires

Intentions means-end

deliberate

BRF

options

perception

action

1258

BDI architecture [Wooldridge, 2009]

while true do1

B ← brf (B,perception()) ; // belief revision2

D← options(B, I) ; // desire revision3

I ← filter(B,D, I) ; // deliberation4

π← plan(B, I ,A) ; // means-end5

while π 6= ∅ do6

execute(head(π))7

π← tail(π)8

59

BDI architecture [Wooldridge, 2009]

while true do1

B ← brf (B,perception()) ; // belief revision2

D← options(B, I) ; // desire revision3

I ← filter(B,D, I) ; // deliberation4

π← plan(B, I ,A) ; // means-end5

while π 6= ∅ do6

execute(head(π))7

π← tail(π)8

fine for pro-activity, but not for reactivity (over commitment)

59

BDI architecture [Wooldridge, 2009]

while true do1

B ← brf (B,perception()) ; // belief revision2

D← options(B, I) ; // desire revision3

I ← filter(B,D, I) ; // deliberation4

π← plan(B, I ,A) ; // means-end5

while π 6= ∅ do6

execute(head(π))7

π← tail(π)8

B ← brf (B,perception())9

if ¬sound(π, I ,B) then10

π← plan(B, I ,A)11

revise commitment to plan – re-planning for context adaptation

59

BDI architecture [Wooldridge, 2009]

while true do1

B ← brf (B,perception()) ; // belief revision2

D← options(B, I) ; // desire revision3

I ← filter(B,D, I) ; // deliberation4

π← plan(B, I ,A) ; // means-end5

while π 6= ∅ and ¬succeeded(I ,B) and ¬impossible(I ,B) do6

execute(head(π))7

π← tail(π)8

B ← brf (B,perception())9

if ¬sound(π, I ,B) then10

π← plan(B, I ,A)11

revise commitment to intentions – Single-Minded Commitment

59

BDI architecture [Wooldridge, 2009]

while true do1

B ← brf (B,perception()) ; // belief revision2

D← options(B, I) ; // desire revision3

I ← filter(B,D, I) ; // deliberation4

π← plan(B, I ,A) ; // means-end5

while π 6= ∅ and ¬succeeded(I ,B) and ¬impossible(I ,B) do6

execute(head(π))7

π← tail(π)8

B ← brf (B,perception())9

if reconsider(I ,B) then10

D← options(B, I)11

I ← filter(B,D, I)12

if ¬sound(π, I ,B) then13

π← plan(B, I ,A)14

reconsider the intentions (not always!)

59

Intentions

I Intentions pose problems for the agents: they need to determine a
way to achieve them (planning and acting)

I Intentions provide a “screen of admissibility” for adopting new
intentions

I Agents keep tracking their success of attempting to achieve their
intentions

I Agents should not spend all their time revising intentions (losing
pro-activity and reactivity)

60

Jason
Agent Programming Language

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

62

(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X). // I

beliefs: prolog like (First Order Logic)

63

(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X). // I

beliefs: prolog like (First Order Logic)
desires: prolog like, with ! prefix

63

(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X). // I

beliefs: prolog like (First Order Logic)
desires: prolog like, with ! prefix
plans:
I define when a desire becomes an intention ; deliberate
I how it is satisfied
I are used for practical reasoning ; means-end

63

(BDI & Jason) Hello World – agent bob
desires from perception – options

+happy(bob) <- !say(hello).

+!say(X) : not today(monday) <- .print(X).

64

(BDI & Jason) Hello World – agent bob
source of beliefs

+happy(bob)[source(A)]
: someone_who_knows_me_very_well(A)
<- !say(hello).

+!say(X) : not today(monday) <- .print(X).

65

(BDI & Jason) Hello World – agent bob
plan selection

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X).

66

(BDI & Jason) Hello World – agent bob
intention revision

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X); !say(X).

-happy(H)
: .my_name(H)
<- .drop_intention(say(hello)).

67

(BDI & Jason) Hello World – agent bob
intention revision

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X); !say(X).

-happy(H)
: .my_name(H)
<- .drop_intention(say(hello)).

67

(BDI & Jason) Hello World – agent bob
intention revision / Features

I we can have several intentions based on the same plans

; running concurrently
I long term goal running

; reaction meanwhile!

68

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

69

AgentSpeak
The foundational language for Jason

I Originally proposed by Rao [Rao, 1996]
I Programming language for BDI agents
I Elegant notation, based on logic programming
I Inspired by PRS [Georgeff and Lansky, 1987], dMARS

[d’Inverno et al., 1997], and BDI Logics [Rao et al., 1995]
I Abstract programming language aimed at theoretical results

70

Jason
A practical implementation of a variant of AgentSpeak

I Jason implements the operational semantics of a variant of
AgentSpeak

I Has various extensions aimed at a more practical programming
language (e.g. definition of the MAS, communication, ...)

I Highly customised to simplify extension and experimentation
I Developed by Jomi F. Hübner, Rafael H. Bordini, and others

71

Main Language Constructs

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how

Events: happen as consequence to changes in the agent’s beliefs
or goals

Intentions: plans instantiated to achieve some goal

72

Main Language Constructs and Runtime Structures

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how

Events: happen as consequence to changes in the agent’s beliefs
or goals

Intentions: plans instantiated to achieve some goal

72

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

73

Basic Reasoning cycle
runtime interpreter

I perceive the environment and update belief base
I process new messages
I select event
I select relevant plans
I select applicable plans
I create/update intention
I select intention to execute
I execute one step of the selected intention

74

Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

75

Jason Reasoning Cycle
Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

26

I machine perception

I belief revison

I knowledge

representation

I communication,

argumentation

I trust

I social power

75

Jason Reasoning Cycle
Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

27

I planning

I reasoning

I decision theoretic

techniques

I learning

(reinforcement)

75

Jason Reasoning Cycle
Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

28

I intention

reconsideration

I scheduling

I action theories

75

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

76

Beliefs — Representation

Syntax

Beliefs are represented by annotated literals of first order logic

functor(term1, ..., termn)[annot1, ..., annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].
~lier(bob)[source(self)].

77

Beliefs — Dynamics I
by perception

beliefs annotated with source(percept) are automatically updated
accordingly to the perception of the agent

by intention

the plan operators + and - can be used to add and remove beliefs
annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice)[source(self)]

-lier(john); // removes lier(john)[source(self)]

78

Beliefs — Dynamics II

by communication

when an agent receives a tell message, the content is a new belief
annotated with the sender of the message

.send(tom,tell,lier(alice)); // sent by bob

// adds lier(alice)[source(bob)] in Tom’s BB

...

.send(tom,untell,lier(alice)); // sent by bob

// removes lier(alice)[source(bob)] from Tom’s BB

79

Goals — Representation

Types of goals

I Achievement goal: goal to do
I Test goal: goal to know

Syntax

Goals have the same syntax as beliefs, but are prefixed by
! (achievement goal) or
? (test goal)

Example (Initial goal of agent Tom)

!write(book).
!~read(book).

80

Goals — Dynamics I
by intention

the plan operators ! and ? can be used to add a new goal annotated
with source(self)

...
// adds new achievement goal !write(book)[source(self)]

!write(book);
...
!~read(book);

// adds new test goal ?publisher(P)[source(self)]

?publisher(P);
...
?~bought(P);

81

Goals — Dynamics II
by communication – achievement goal

when an agent receives an achieve message, the content is a new
achievement goal annotated with the sender of the message

.send(tom,achieve,write(book)); // sent by Bob

// adds new goal write(book)[source(bob)] for Tom

...

.send(tom,unachieve,write(book)); // sent by Bob

// removes goal write(book)[source(bob)] for Tom

82

Goals — Dynamics III

by communication – test goal

when an agent receives an askOne or askAll message, the content is a
new test goal annotated with the sender of the message

.send(tom,askOne,published(P),Answer); // sent by Bob

// adds new goal ?publisher(P)[source(bob)] for Tom

// the response of Tom will unify with Answer

83

Triggering Events — Representation

I Events happen as consequence to changes in the agent’s beliefs or
goals

I An agent reacts to events by executing plans
I Types of plan triggering events

+b (belief addition)
-b (belief deletion)

+!g (achievement-goal addition)
-!g (achievement-goal deletion)
+?g (test-goal addition)
-?g (test-goal deletion)

84

Plans — Representation

An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:
I the triggering event denotes the events that the plan is meant to

handle
I the context represent the circumstances in which the plan can be

used
I the body is the course of action to be used to handle the event if

the context is believed true at the time a plan is being chosen to
handle the event

85

Plans — Operators for Plan Context

Boolean operators

& (and)

| (or)
not (not)

= (unification)

>, >= (relational)

<, <= (relational)

== (equals)

\== (different)

Arithmetic operators

+ (sum)

- (subtraction)

* (multiply)

/ (divide)

div (divide – integer)

mod (remainder)

** (power)

86

Plans — Operators for Plan Body

+rain : time_to_leave(T) & clock.now(H) & H >= T
<- !g1; // new sub-goal

!!g2; // new goal

?b(X); // new test goal

+b1(T-H); // add mental note

-b2(T-H); // remove mental note

-+b3(T*H); // update mental note

jia.get(X); // internal action

X > 10; // constraint to carry on

close(door);// external action

!g3[hard_deadline(3000)]. // goal with deadline

87

Plans — Example

+green_patch(Rock)[source(percept)]
: not battery_charge(low)
<- ?location(Rock,Coordinates);

!at(Coordinates);
!examine(Rock).

+!at(Coords)
: not at(Coords) & safe_path(Coords)
<- move_towards(Coords);

!at(Coords).
+!at(Coords)

: not at(Coords) & not safe_path(Coords)
<- ...

+!at(Coords) : at(Coords).

88

Plans — Dynamics

The plans that form the plan library of the agent come from
I initial plans defined by the programmer
I plans added dynamically and intentionally by

I .add_plan
I .remove_plan

I plans received from
I tellHow messages
I untellHow

89

A note about “Control”

Agents can control (manipulate) their own (and influence the others)
I beliefs
I goals
I plan

By doing so they control their behaviour

The developer provides initial values of these elements and thus also
influence the behaviour of the agent

90

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

91

Failure Handling: Contingency Plans

Example (blind commitment to g)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g : true <- !g. // keep trying
-!g : true <- !g. // in case of some failure

+g : true <- .succeed_goal(g).

92

Failure Handling: Contingency Plans

Example (single minded commitment)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g : true <- !g. // keep trying
-!g : true <- !g. // in case of some failure

+g : true <- .succeed_goal(g).
+f : true <- .fail_goal(g). // f is the drop condition for g

93

Failure Handling: Compiler pre-processing – directives

Example (single minded commitment)

{ begin smc(g,f)}
+!g : ... <- a1.
+!g : ... <- a2.
+!g : ... <- a3.

{ end }

94

Meta Programming

Example (an agent that asks for plans on demand)

-!G[error(no_relevant)] : teacher(T)
<- .send(T, askHow, { +!G }, Plans);

.add_plan(Plans);
!G.

in the event of a failure to achieve any goal G due to no relevant
plan, asks a teacher for plans to achieve G and then try G again

I The failure event is annotated with the error type, line, source, ...
error(no_relevant) means no plan in the agent’s plan library to
achieve G

I { +!G } is the syntax to enclose triggers/plans as terms

95

Other Language Features
Strong Negation

+!leave(home)
: ~raining
<- open(curtains); ...

+!leave(home)
: not raining & not ~raining
<- .send(mum,askOne,raining,Answer,3000); ...

96

Prolog-like Rules in the Belief Base

tall(X) :-
woman(X) & height(X, H) & H > 1.70
|
man(X) & height(X, H) & H > 1.80.

likely_color(Obj,C) :-
colour(Obj,C)[degOfCert(D1)] &
not (colour(Obj,_)[degOfCert(D2)] & D2 > D1) &
not ~colour(C,B).

97

Plan Annotations
I Like beliefs, plans can also have annotations, which go in the plan

label
I Annotations contain meta-level information for the plan, which

selection functions can take into consideration
I The annotations in an intended plan instance can be changed

dynamically (e.g. to change intention priorities)
I There are some pre-defined plan annotations, e.g. to force a

breakpoint at that plan or to make the whole plan execute
atomically

Example (an annotated plan)

@myPlan[chance_of_success(0.3), usual_payoff(0.9),
any_other_property]

+!g(X) : c(t) <- a(X).

98

Internal Actions

I Unlike actions, internal actions do not change the environment
I Code to be executed as part of the agent reasoning cycle
I AgentSpeak is meant as a high-level language for the agent’s

practical reasoning and internal actions can be used for invoking
legacy code elegantly

I Internal actions can be defined by the user in Java

libname.action_name(. . .)

99

Standard Internal Actions

I Standard (pre-defined) internal actions have an empty library name
I .print(term1,term2, . . .)
I .union(list1, list2, list3)
I .my_name(var)
I .send(ag,perf ,literal)
I .intend(literal)
I .drop_intention(literal)

I Many others available for: printing, sorting, list/string operations,
manipulating the beliefs/annotations/plan library, creating agents,
waiting/generating events, etc.

100

Namespaces & ModularityNamespaces & Modularity

51101

Namespaces & Modularity
Namespaces & Modularity

–include(”initiator.asl”, pc)˝

–include(”initiator.asl”, tv)˝

!pc::startCNP(fix(pc)).

!tv::startCNP(fix(tv)).

+pc::winner(X)

¡- .print(X).

52

102

Concurrent Plans

+!ga <- ...; !gb;
+!gb <- ...; (!g1 |&| !g2); a1; ... // fork-join-and
// a1 will be executed when !g2 and !g1 will be achieved

+!ga <- ...; !gb;
+!gb <- ...; (!g1 ||| !g2); a1; ... // fork-join-xor
// a1 will be executed after !g2 or !g1 are achieved
// when one of !g2 or !g1 is achieved the other is dropped
-!g : true <- !g. // in case of some failure

+g : true <- .succeed_goal(g).
+f : true <- .fail_goal(g). // f is the drop condition for g

103

Jason Customisations

I Agent class customisation:
selectMessage, selectEvent, selectOption, selectIntention, buf, brf,
...

I Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

I Belief base customisation:
add, remove, contains, ...
I Example available with Jason: persistent belief base (in text files, in

data bases, ...)

104

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

105

Jason × Java

Consider a very simple robot with two goals:
I when a piece of gold is seen, go to it
I when battery is low, go charge it

106

Java code – go to gold

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));

}
while (seeGold) {

a = selectDirection();

doAction(go(a));

} } } }

107

Java code – charge battery

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));
if (lowBattery) charge();

}
while (seeGold) {

a = selectDirection ();
if (lowBattery) charge();
doAction(go(a));
if (lowBattery) charge();

} } } }

108

Jason code

direction(gold) :- see(gold).
direction(random) :- not see(gold).

+!find(gold) // long term goal
<- ?direction(A);

go(A);
!find(gold).

+battery(low) // reactivity
<- !charge.

ˆ!charge[state(started)] // goal meta-events
<- .suspend(find(gold)).

ˆ!charge[state(finished)]
<- .resume(find(gold)).

109

Fibonacci calculator server – “java” versionFibonacci calculator server – “java” version

Fibonaccer Bob

Alice

fib(40)

fib(3)

while true int fib(int n)

m = receiveMsg() if n ¡= 2

if m == fib(N) return 1

m.answer(fib(m.getArg(0))) else

... return fib(n-1)+fib(n-2)

How long will Alice wait?

59110

Fibonacci calculator server – AkkaFibonacci calculator server – Akka

60

111

Fibonacci calculator agent – Jason versionFibonacci calculator agent – version Jason

Fibonaccer Bob

Alice

fib(40)

fib(3)

+?fib(1,1).

+?fib(2,1).

+?fib(N,F) ¡- ?fib(N-1,A); ?fib(N-2,B); F = A+B.

How long will Alice wait?

61
112

Fibonacci calculator agent – Jason versionFibonacci calculator server – Jason

62113

Jason × Prolog

I With the Jason extensions, nice separation of theoretical and
practical reasoning

I BDI architecture allows
I long-term goals (goal-based behaviour)
I reacting to changes in a dynamic environment
I handling multiple foci of attention (concurrency)

I Acting on an environment and a higher-level conception of a
distributed system

114

Outline

Programming Agents
Fundamentals
Agent Models Panorama
Agent Oriented Programming
(BDI & Jason) Hello World
Introduction to Jason
Reasoning Cycle
Main constructs: beliefs, goals, and plans
Other language features
Comparison with other paradigms
Conclusions and wrap-up

115

Some Shortfalls

I IDEs and programming tools are still not anywhere near the level of
OO languages

I Debugging is a serious issue — much more than “mind tracing” is
needed

I Combination with organisational models is very recent — much
work still needed

I Principles for using declarative goals in practical programming
problems still not “textbook”

I Large applications and real-world experience much needed!

116

Some Trends

I Modularity and encapsulation
I Debugging MAS is hard: problems of concurrency, simulated

environments, emergent behaviour, mental attitudes
I Logics for Agent Programming languages
I Further work on combining with interaction, environments, and

organisations
I We need to put everything together: rational agents,

environments, organisations, normative systems, reputation
systems, economically inspired techniques, etc.

; Multi-Agent Programming

117

Some Related Projects I

I Speech-act based communication
Joint work with Renata Vieira, Álvaro Moreira, and Mike
Wooldridge

I Cooperative plan exchange
Joint work with Viviana Mascardi, Davide Ancona

I Plan Patterns for Declarative Goals
Joint work with M.Wooldridge

I Planning (Felipe Meneguzzi and Colleagues)
I Web and Mobile Applications (Alessandro Ricci and Colleagues)
I Belief Revision

Joint work with Natasha Alechina, Brian Logan, Mark Jago

118

Some Related Projects II

I Ontological Reasoning
I Joint work with Renata Vieira, Álvaro Moreira
I JASDL: joint work with Tom Klapiscak

I Goal-Plan Tree Problem (Thangarajah et al.)
Joint work with Tricia Shaw

I Trust reasoning (ForTrust project)
I Agent verification and model checking

Joint project with M.Fisher, M.Wooldridge, W.Visser, L.Dennis,
B.Farwer

119

Some Related Projects III

I Environments, Organisation and Norms
I Normative environments

Join work with A.C.Rocha Costa and F.Okuyama
I MADeM integration (Francisco Grimaldo Moreno)
I Normative integration (Felipe Meneguzzi)

I More on jason.sourceforge.net, related projects

120

jason.sourceforge.net

Summary

I AgentSpeak
I Logic + BDI
I Agent programming language

I Jason
I AgentSpeak interpreter
I Implements the operational semantics of AgentSpeak
I Speech-act based communicaiton
I Highly customisable
I Useful tools
I Open source
I Open issues

121

Acknowledgements

I Many thanks to the
I Various colleagues acknowledged/referenced throughout these slides
I Jason users for helpful feedback
I CNPq for supporting some of our current researh

122

Further Resources

I http://jason.sourceforge.net

I R.H. Bordini, J.F. Hübner, and
M. Wooldrige
Programming Multi-Agent Systems in
AgentSpeak using Jason
John Wiley & Sons, 2007.

123

http://jason.sourceforge.net

Multi-Agent Oriented Programming

O. Boissier

Univ. Lyon, IMT Mines Saint-Etienne, LaHC UMR CNRS 5516, France

in tight collaboration with R.H. Bordini2, J.F. Hübner3, A. Ricci4

2 Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
3 Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

4 University of Bologna (UNIBO), Bologna, Italy

Winter 2019

UMR • CNRS • 5516 • SAINT-ETIENNE

124

http://www.emse.fr/~boissier/
https://www.inf.pucrs.br/r.bordini/Rafael_Bordini/Welcome.html
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/

Bibliography I

Bordini, R. H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A. E.,
Gómez-Sanz, J. J., Leite, J., O’Hare, G. M. P., Pokahr, A., and Ricci, A.
(2006).
A survey of programming languages and platforms for multi-agent systems.
Informatica (Slovenia), 30(1):33–44.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors
(2005).
Multi-Agent Programming: Languages, Platforms and Applications, volume 15
of Multiagent Systems, Artificial Societies, and Simulated Organizations.
Springer.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors
(2009).
Multi-Agent Programming: Languages, Tools and Applications.
Springer.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007).
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

125

Bibliography II

Bratman, M. E. (1990).
What is intention.
Intentions in communication, pages 15–32.

Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988).
Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349–355.

Brooks, R. (1986).
A robust layered control system for a mobile robot.
IEEE journal on robotics and automation, 2(1):14–23.

Dastani, M. (2008).
2apl: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214–248.

d’Inverno, M., Kinny, D., Luck, M., and Wooldridge, M. (1997).
A formal specification of dmars.
In International Workshop on Agent Theories, Architectures, and Languages,
pages 155–176. Springer.

126

Bibliography III
Ferguson, I. A. (1995).
On the role of bdi modeling for integrated control and coordinated behavior in
autonomous agents.
Applied Artificial Intelligence an International Journal, 9(4):421–447.

Fisher, M. (2005).
Metatem: The story so far.
In PROMAS, pages 3–22.

Fisher, M., Bordini, R. H., Hirsch, B., and Torroni, P. (2007).
Computational logics and agents: A road map of current technologies and
future trends.
Computational Intelligence, 23(1):61–91.

Georgeff, M. P. and Lansky, A. L. (1987).
Reactive reasoning and planning.
In AAAI, volume 87, pages 677–682.

Giacomo, G. D., Lespérance, Y., and Levesque, H. J. (2000).
Congolog, a concurrent programming language based on the situation calculus.
Artif. Intell., 121(1-2):109–169.

127

Bibliography IV

Hindriks, K. V. (2009).
Programming rational agents in GOAL.
In [Bordini et al., 2009], pages 119–157.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C. (1997).
Formal semantics for an abstract agent programming language.
In Singh, M. P., Rao, A. S., and Wooldridge, M., editors, ATAL, volume 1365
of Lecture Notes in Computer Science, pages 215–229. Springer.

Müller, J. P. and Pischel, M. (1994).
An architecture for dynamically interacting agents.
International Journal of Intelligent and Cooperative Information Systems,
3(01):25–45.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2005).
Jadex: A bdi reasoning engine.
In [Bordini et al., 2005], pages 149–174.

128

Bibliography V

Rao, A. S. (1996).
Agentspeak(l): Bdi agents speak out in a logical computable language.
In de Velde, W. V. and Perram, J. W., editors, MAAMAW, volume 1038 of
Lecture Notes in Computer Science, pages 42–55. Springer.

Rao, A. S., Georgeff, M. P., et al. (1995).
Bdi agents: From theory to practice.
In ICMAS, volume 95, pages 312–319.

Shoham, Y. (1993).
Agent-oriented programming.
Artif. Intell., 60(1):51–92.

Winikoff, M. (2005).
Jack intelligent agents: An industrial strength platform.
In [Bordini et al., 2005], pages 175–193.

Wooldridge, M. (2009).
An Introduction to MultiAgent Systems.
John Wiley and Sons, 2nd edition.

129

	Programming Agents
	Fundamentals
	Agent Models Panorama
	Agent Oriented Programming
	(BDI & Jason) Hello World
	Introduction to Jason
	Reasoning Cycle
	Main constructs: beliefs, goals, and plans
	Other language features
	Comparison with other paradigms
	Conclusions and wrap-up

