
Multi-Agent Oriented Programming

O. Boissier

Univ. Lyon, IMT Mines Saint-Etienne, LaHC UMR CNRS 5516, France

in tight collaboration with R.H. Bordini2, J.F. Hübner3, A. Ricci4

2 Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
3 Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

4 University of Bologna (UNIBO), Bologna, Italy

Winter 2019

UMR • CNRS • 5516 • SAINT-ETIENNE

http://www.emse.fr/~boissier/
https://www.inf.pucrs.br/r.bordini/Rafael_Bordini/Welcome.html
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/

Advanced Steps
in

Multi-Agent Oriented Programming

Deeper Walk in JaCaMo Metamodel

2

JaCaMo meta-model
Deeper walk in JaCaMo meta-model

dynamic relation

composition

act

communicate

participate

Agent

Agent

GoalBelief

Action

Organisation

Group Scheme

Role Goal

Organisation

Norm

regulateco
un

t-a
s

em
po

we
r

perceive

Concept

Dimension

coordinate

Environment

Workspace

Operation

Environment

Artifact

Observable
property

Interaction

*

*

*

*

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

*

*

*

Plan
*

*

Manual

Observable
event

Event
*

*

*

*

*

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Mission *

*

Link

Simplified view on JaCaMo meta-model [Boissier et al., 2011]
A seamless integration of three dimensions based on Jason [Bordini et al., 2007],

Cartago [Ricci et al., 2009], Moise [Hübner et al., 2009] meta-models

3

Outline

Programming Agents

Programming Environment

Programming Organization

Advanced practice of JaCaMo

Conclusion and Perspective

4

Agent dimension
Programming Agents

composition
Agent

Agent

GoalBelief

Action

Concept

Dimension

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Event
*

*

*

*

*

5

Agent program
Programming Agents

Main language constructs:
Beliefs: represent the information available to an agent (e.g.

about the environment or other agents)
Goals: represent states of affairs the agent wants to bring

about
Plans: are recipes for action, representing the agent’s

know-how
Actions can be internal, external, communicative or
organisational ones

Events: happen as consequence to changes in the agent’s
beliefs or goals

Intentions: plans instantiated to achieve some goal

Note: identifiers starting in upper case denote variables

6

Agent program
Programming Agents

Main language constructs:
Beliefs: represent the information available to an agent (e.g.

about the environment or other agents)
Goals: represent states of affairs the agent wants to bring

about
Plans: are recipes for action, representing the agent’s

know-how
Actions can be internal, external, communicative or
organisational ones

Runtime structures:
Events: happen as consequence to changes in the agent’s

beliefs or goals
Intentions: plans instantiated to achieve some goal

Note: identifiers starting in upper case denote variables
6

Beliefs representation
Programming Agents

Syntax
Beliefs are represented by annotated literals of first order logic

functor(term1, …, termn)[annot1, …, annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].
~lier(bob)[source(self)].

7

Goals representation
Programming Agents

Syntax
Goals are represented as beliefs with a prefix:
▶ ! to denote achievement goal (goal to do)
▶ ? to denote test goal (goal to know)

Example (Initial goal of agent Tom)

!write(book).

8

Plans representation
Programming Agents

Syntax
An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:
▶ triggering_event: events that the plan is meant to handle
▶ context: situations in which the plan can be used
▶ body: course of action to be used to handle the event if the

context is believed to be true at the time a plan is being chosen to
handle the event

9

Plans representation – Triggering events
Programming Agents

▶ Events happen as consequence to changes in the agent’s beliefs
or goals

▶ An agent reacts to events by executing plans

Syntax

▶ belief addition: +b
▶ belief deletion: -b
▶ achievement-goal addition: +!g
▶ achievement-goal deletion: -!g
▶ test-goal addition: +?g
▶ test-goal deletion): -?g

10

Plans representation – Context
Programming Agents

Context is a boolean expression with the following operators:

Syntax
▶ Boolean operators

& (and)
| (or)

not (not)
= (unification)

>, >= (relational)
<, <= (relational)

== (equals)
\== (different)

▶ Arithmetic operators
+ (sum)
- (subtraction)
* (multiply)
/ (divide)

div (divide – integer)
mod (remainder)

** (power)

11

Plans representation – Body
Programming Agents

A plan body may contain:
▶ Belief operators

+ (new belief)
- (dispose belief)

-+ (update belief)

▶ Goal operators
! (new achievement sub-goal)
? (new test sub-goal)
!! (new achievement goal)

▶ External actions
▶ Internal actions

– Unlike actions, internal actions do not change the environment
– Encapsulate code to be executed as part of the agent reasoning cycle
– Internal actions can be used for invoking legacy code

▶ Constraints

12

Internal Actions
Programming Agents

▶ Internal actions can be defined by the user in Java

libname.action_name(. . .)

▶ Standard (pre-defined) internal actions have an empty library
name

– .print(term1, term2, . . .)
– .union(list1, list2, list3)
– .my_name(var)
– .send(ag,perf,literal)
– .intend(literal)
– .drop_intention(literal)

▶ Many others available for: printing, sorting, list/string operations,
manipulating the beliefs/annotations/plan library, creating agents,
waiting/generating events, etc.

13

Plans representation
Programming Agents

Example

+rain : time_to_leave(T) & clock.now(H) & H >= T
<- !g1; // new sub-goal

!!g2; // new goal
?b(X); // new test goal
+b1(T-H); // add mental note
-b2(T-H); // remove mental note
-+b3(T*H); // update mental note
jia.get(X); // internal action
X > 10; // constraint to carry on
close(door);// external action
!g3[hard_deadline(3000)]. // goal with deadline

14

Plan representation
Programming Agents

Example

+green_patch(Rock)[source(percept)]
: not battery_charge(low)
<- ?location(Rock,Coordinates);

!at(Coordinates);
!examine(Rock).

+!at(Coords)
: not at(Coords) & safe_path(Coords)
<- move_towards(Coords);

!at(Coords).
+!at(Coords)

: not at(Coords) & not safe_path(Coords)
<- ...

+!at(Coords) : at(Coords).

15

Agent dynamics
Programming Agents

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

16

Beliefs dynamics
Programming Agents

Internal reasoning
The plan operators + and - can be used to add and remove beliefs
annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice)[source(self)]
-lier(john); // removes lier(john)[source(self)]

Perception (from the environment)
Beliefs are automatically updated accordingly to the perception of the
agent (annotated with source(percept))

17

Beliefs dynamics
Programming Agents

Communication (from other agents)
When an agent receives a tell (resp. untell) message, the content is a
new belief (annotated with the sender of the message) (resp. belief
corresponding to the content is deleted)

.send(tom,tell,lier(alice)); // sent by bob
// adds lier(alice)[source(bob)] in Tom's Belief Base
...
.send(tom,untell,lier(alice)); // sent by bob
// removes lier(alice)[source(bob)] from Tom's Belief Base

18

Goals dynamics
Programming Agents

Internal reasoning
The plan operators !, !! and ? are used to add a new goal (annotated
with source(self))

...
// adds new achievement goal !write(book)[source(self)]
!write(book);

// adds new test goal ?publisher(P)[source(self)]
?publisher(P);
...

19

Goals dynamics
Programming Agents

Communication of achievement goal
When an agent receives an achieve message, the content is a new
achievement goal (annotated with the sender of the message)

.send(tom,achieve,write(book)); // sent by Bob
// adds new goal write(book)[source(bob)] for Tom
.send(tom,unachieve,write(book)); // sent by Bob
// removes goal write(book)[source(bob)] for Tom

Communication of test goal
When an agent receives an askOne or askAll message, the content is
a new test goal (annotated with the sender of the message)

.send(tom,askOne,published(P),Answer); // sent by Bob
// adds new goal ?publisher(P)[source(bob)] for Tom
// the response of Tom will unify with Answer

20

Plans dynamics
Programming Agents

The plans that form the plan library of the agent come from
▶ plans added (resp. removed) dynamically by intentions in internal

reasoning:
– .add_plan (resp. .remove_plan)

▶ plans added (resp. removed) by communication:
– tellHow (resp. untellHow)

Example

.send(bob, askHow, +!goto(_,_)[source(_)], ListOfPlans);

...

.plan_label(Plan,hp); // get a plans based on a plan's label

.send(A,tellHow,Plan);

.send(bob,tellHow,"+!start : true <- .println(ḧello)̈.").

21

Integrating A & A dimensions
Deeper walk in JaCaMo meta-model

dynamic relation

composition

Agent

Agent

GoalBelief

Action

Concept DimensionInteraction

communicate

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Agent

Agent

GoalBelief

Action

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Event
*

*

*

*

*

22

Outline

Programming Agents

Programming Environment

Programming Organization

Advanced practice of JaCaMo

Conclusion and Perspective

23

Environment dimension
Programming Environment

composition

Concept

Dimension

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Manual

Observable
event

Based on A&A [Omicini et al., 2008]
▶ Artifacts

– non-autonomous, function-oriented, stateful entities
▶ controllable and observable

– modelling the tools and resources used by agents
▶ designed by MAS programmers

▶ Workspaces
– grouping agents & artifacts
– defining the topology of the computational environment

24

Artifact Abstract Representation
Programming Environment

OperationX(Params)

...

ObsPropName(Args)

...

SIGNALS

USAGE

INTERFACE

OBSERVABLE

PROPERTIES

OperationY(Params)

...

LINK

INTERFACE

OPERATIONS

25

A World of Artifacts
Programming Environment

put

n_items 0

max_items 100

get

a bounded buffer

inc

count 5

reset

a counter

switch

state true

a flag

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

postEvent

registerForEvs

clearEvents

an event service

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

in

rd

out

a tuple space

▶ Individual or personal artifacts: functionalities for a single agent
use (e.g. agenda, library)

▶ Social artifacts: functionalities for structuring and managing the
interaction (e.g. a blackboard, a game-board)

▶ Boundary artifacts: access external resources/services (e.g. a
printer, a Web Service) or to represent devices enabling I/O with
users (e.g GUI, console)

26

Programming Artifacts – Some API spots
Programming Environment

▶ Artifact base class
▶ @OPERATION annotation to mark artifact’s operations
▶ set of primitives to define/update/... observable properties
▶ primitive to generate signals: signal

class Counter extends Artifact {

 void init(){
 defineObsProp("count",0);
 }

 @OPERATION void inc(){
 ObsProperty p = getObsProperty("count");
 p.updateValue(p.intValue() + 1);
 signal("tick");
 }
}

inc

count 5

27

Programming Artifacts – Basic operation features
Programming Environment

▶ output parameters to represent action feedbacks
▶ long-term operations, with a high-level support for

synchronization (await, @GUARD)

public class BoundedBuffer extends Artifact {
 private LinkedList<Item> items;
 private int nmax;

 void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("n_items",0);
 this.nmax = nmax;
 }

 @OPERATION void put(Item obj){
 await("bufferNotFull");
 items.add(obj);

getObsProperty("n_items").updateValue(items.size());
 }

 @OPERATION void get(OpFeedbackParam<Item> res) {
 await("itemAvailable");
 Item item = items.removeFirst();

res.set(item);
getObsProperty("n_items").updateValue(items.size());

 }

 @GUARD boolean itemAvailable(){ return items.size() > 0; }

 @GUARD boolean bufferNotFull(Item obj){ return items.size() < nmax; }
}

put

n_items 5

get

28

Programming Artifacts – Internal operations
Programming Environment

▶ execution of operations triggered by other operations
▶ implementing controllable processes

public class Clock extends Artifact {

 boolean working;
 final static long TICK_TIME = 100;

 void init(){ working = false; }

 @OPERATION void start(){
 if (!working){
 working = true;
 execInternalOp("work");
 } else {
 failed("already_working");
 }
 }

 @OPERATION void stop(){ working = false; }

 @INTERNAL_OPERATION void work(){
 while (working){
 signal("tick");
 await_time(TICK_TIME);
 }
 }
}

!test_clock.

+!test_clock
 <- makeArtifac("myClock","Clock",[],Id);
 focus(Id);
 +n_ticks(0);
 start;
 println("clock started.").

@plan1
+tick: n_ticks(10)
 <- stop;
 println("clock stopped.").

@plan2 [atomic]
+tick: n_ticks(N)
 <- -+n_ticks(N+1);
 println("tick perceived!").

CLOCK CLOCK USER AGENT

29

Artifact dynamics
Programming Environment

▶ Process-based operation execution semantics
– atomicity and transactionality: operations are executed transactionally with

respect to the observable state of the artifact
– concurrency: operations execution can overlap (use of the await primitive to

break the operation in multiple transactional steps)
– key feature for implementing coordination functionalities

▶ Observable property creation/change, when:
– the operation completes, successfully
– a signal is generated
– the operation is suspended (by means of an await)
– If an operation fails, changes to the observable state of the artifact are

rolled back.
▶ Events creation

30

Integrating A & E dimensions
Deeper walk in JaCaMo meta-model

dynamic relation

composition

Agent

Agent

GoalBelief

Action

Concept Dimension

Environment

Workspace

Operation

Environment

Artifact

Observable
property

Interaction

act

communicate

perceive

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Manual

Observable
event

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Event
*

*

*

*

*

Mapping of:
▶ Artifacts’ operations onto agent actions
▶ Artifacts’ observable properties onto agent beliefs
▶ Artifacts’ signals onto belief-update events related to observable events
▶ Jason data-model is extended to manage also (Java) objects

Dynamic actions repertoire:
▶ given by the dynamic set of operations provided by the overall set of

artifacts available in the workspace
▶ can be changed by creating/disposing artifacts

31

Predefined actions repertoire
Deeper walk in JaCaMo meta-model

Accessible to agents through a predefined set of artifacts contained
by default in each workspace:
▶ Functionalities to manage the workspace (including security):

– operations: makeArtifact, lookupArtifact, focus,...
– accessible through workspace, type: cartago.WorkspaceArtifact

▶ Core functionalities related to a node:
– operations: createWorkspace, joinWorkspace, ...
– accessible through node, type: cartago.NodeArtifact

▶ Others:
– operations: println,... accessible through console, type

cartago.tools.Console
– operations: out, in, rd, ... accessible through blackboard, type

cartago.tools.TupleSpace

; pre-defined beliefs repertoire also

32

Interaction model – Action execution
Deeper walk in JaCaMo meta-model

▶ Action success/failure semantics is defined by operation
semantics

▶ Executing an action suspends the intention until completion or
failure of the corresponding operation

– Action completion events generated by the environment and automatically
processed by the agent/environment platform bridge

– No need of explicit observation and reasoning by agents to know if an
action succeeded

▶ The agent execution cycle is not blocked!
– The agent can continue to process percepts and possibly execute actions of

other intentions

33

Interaction Model: Use
Deeper walk in JaCaMo meta-model

op(Params)

ValuePropName

ValuePropName
...

...

AGENT

op(parms)
action

▶ Performing an action corresponds to triggering the execution of
an operation

– acting on artifact’s usage interface

34

Interaction Model: Operation execution
Deeper walk in JaCaMo meta-model

OPERATION EXECUTION
op(Params)

ValuePropName
Value
...

...

SIGNALS OBS PROPERTIES
CHANGE

AGENT

op(parms)
action

action completion
- with success or failure -

▶ A process structured in one or multiple transactional steps
▶ Asynchronous with respect to agent

– ...which can proceed possibly reacting to percepts and executing actions of
other plans/activities

▶ Operation completion causes action completion
– Action completion events with success or failure, possibly with action

feedbacks

35

Interaction Model: Observation
Deeper walk in JaCaMo meta-model

AGENT
OBSERVER

Belief Base
(or alike)

propName1(Value).
propName2(Value).
... ValuepropName1

ValuepropName2
...

use

▶ Agents can dynamically select which artifacts to observe
– focus/stopFocus actions

▶ By focussing an artifact
– observable properties are mapped into agent dynamic knowledge about the

state of the world, as percepts
▶ e.g. belief base

– signals are mapped as percepts related to observable events

36

Example 1
Deeper walk in JaCaMo meta-model

class Counter extends Artifact {

 void init(){
 defineObsProp("count",0);
 }

 @OPERATION void inc(){
 ObsProperty p = getObsProperty("count");
 p.updateValue(p.intValue() + 1);
 signal("tick");
 }
}

inc

count 5

User and Observer Agents Working with the shared counter

37

Example 1
Deeper walk in JaCaMo meta-model

!create_and_use.

+!create_and_use : true
 <- !setupTool(Id);
 // use
 inc;
 // second use specifying the Id
 inc [artifact_id(Id)].

// create the tool
+!setupTool(C): true
 <- makeArtifact("c0","Counter",C).

!observe.

+!observe : true
 <- ?myTool(C); // discover the tool
 focus(C).

+count(V)
 <- println(“observed new value: “,V).

+tick [artifact_name(Id,”c0”)]
 <- println(“perceived a tick”).

+?myTool(CounterId): true
 <- lookupArtifact(“c0”,CounterId).

-?myTool(CounterId): true
 <- .wait(10);
 ?myTool(CounterId).

OBSERVER(S)USER(S)

User and Observer Agents Working with the shared counter

37

Example 2
Deeper walk in JaCaMo meta-model

public class BoundedBuffer extends Artifact {
 private LinkedList<Item> items;
 private int nmax;

 void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("n_items",0);
 this.nmax = nmax;
 }

 @OPERATION void put(Item obj){
 await("bufferNotFull");
 items.add(obj);

getObsProperty("n_items").updateValue(items.size());
 }

 @OPERATION void get(OpFeedbackParam<Item> res) {
 await("itemAvailable");
 Item item = items.removeFirst();

res.set(item);
getObsProperty("n_items").updateValue(items.size());

 }

 @GUARD boolean itemAvailable(){ return items.size() > 0; }

 @GUARD boolean bufferNotFull(Item obj){ return items.size() < nmax; }
}

put

n_items 5

get

Producers and Consumers with Bounded buffer

38

Example 2
Deeper walk in JaCaMo meta-model

item_to_produce(0).
!produce.

+!produce: true
 <- !setupTools(Buffer);
 !produceItems.

+!produceItems : true
 <- ?nextItemToProduce(Item);
 put(Item);
 !!produceItems.

+?nextItemToProduce(N) : true
 <- -item_to_produce(N);
 +item_to_produce(N+1).

+!setupTools(Buffer) : true
 <- makeArtifact("myBuffer","BoundedBuffer",
 [10],Buffer).

-!setupTools(Buffer) : true
 <- lookupArtifact("myBuffer",Buffer).

!consume.

+!consume: true
 <- ?bufferReady;
 !consumeItems.

+!consumeItems: true
 <- get(Item);
 !consumeItem(Item);
 !!consumeItems.

+!consumeItem(Item) : true
 <- .my_name(Me);
 println(Me,": ",Item).

+?bufferReady : true
 <- lookupArtifact("myBuffer",_).
-?bufferReady : true
 <-.wait(50);
 ?bufferReady.

PRODUCERS CONSUMERS

Producers and Consumers with Bounded buffer
38

Outline

Programming Agents

Programming Environment

Programming Organization

Advanced practice of JaCaMo

Conclusion and Perspective

39

Organization dimension
Programming Organization

composition

Concept

Dimension

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Mission *

*

Link

organisational-specification section with three sub-sections:
structural, functional, normative

40

Structural specification
Programming Organization

▶ Individual level:
– Role: label used to assign constraints on agents playing it

▶ Collective level:
– Group: set of links, roles, compatibility relations used to define a shared

context for agents playing roles in it
– Link: relation between roles that directly constrains the agents in their

interaction with the other agents playing the corresponding roles

Example

<organisational-specification
<structural-specification>

<role-definitions> ... </role-definitions>
<group-specification id="xxx">

...
</group-specification>

</structural-specification>
...

</organisational-specification>

41

Structural specification – Role
Programming Organization

▶ role-definitions section:
– identifier of the role (id attribute of role tag) with possible inherited roles

(extends tag) - by default, all roles inherit of the soc role -

Example

<role-definitions>
<role id="player" />xs
<role id="coach" />
<role id="middle"> <extends role="player"/> </role>
<role id="leader"> <extends role="player"/> </role>
<role id="r1>

<extends role="r2" />
<extends role="r3" />

</role>
...

</role-definitions>

42

Structural specification – Group
Programming Organization

▶ group-specification section:
– group identifier (id attribute of group-specification tag)
– roles participating to this group and their cardinality (roles tag and id, min,

max), i.e. min. and max. number of agents that should adopt the role in the
group (default is 0 and unlimited)

– links between roles of the group (link tag)
– subgroups and their cardinality (subgroups tag)
– formation constraints on the components of the group

(formation-constraints)

Example

<group-specification id="team">
<roles>

<role id="coach" min="1" max="2"/> ...
</roles>
<links> ... </links>
<subgroups> ... </subgroups>
<formation-constraints> ... </formation-constraints>

</group-specification>

43

Functional specification
Programming Organization

▶ functional-specification section:
– sequence of the schemes participating to the expected behaviour of the

organisation

Example

<functional-specification>
<scheme id="sideAttack" >

<goal id="dogoal" > ... </goal>
<mission id="m1" min="1" max="5">

...
</mission>
...

</scheme>
...

</functional-specification>

44

Functional specification – Scheme, Goal, Plan
Programming Organization

▶ Scheme definition (scheme tag) is composed of:
– identifier of the scheme (id attribute of scheme tag)
– the root goal of the scheme with the plan aiming at achieving it (goal tag)
– the set of missions structuring the scheme (mission tag)

▶ Goal definition within a scheme (goal tag) is composed of:
– an idenfier (id attribute of goal tag)
– a type (achievement default or maintenance)
– min. number of agents that must satisfy it (min) (default is “all”)
– optionally, an argument (argument tag) that must be assigned to a value

when the scheme is created
– optionally a plan

▶ Plan definition attached to a goal (plan tag) is composed of
– one and only one operator (operator attribute of plan tag) with sequence,

choice, parallel as possible values
– set of goal definitions (goal tag) concerned by the operator

45

Scheme – example
Programming Organization

<scheme id="sideAttack">
<goal id="scoreGoal" min="1" >
<plan operator="sequence">

<goal id="g1" min="1" ds="get the ball" />
<goal id="g2" min="3" ds="to be well placed">

<plan operator="parallel">
<goal id="g7" min="1" ds="go toward the opponent's field" />
<goal id="g8" min="1" ds="be placed in the middle field" />
<goal id="g9" min="1" ds="be placed in the opponent's goal area" />

</plan>
</goal>
<goal id="g3" min="1" ds="kick the ball to the m2Ag" >

<argument id="M2Ag" />
</goal>
<goal id="g4" min="1" ds="go to the opponent's back line" />
<goal id="g5" min="1" ds="kick the ball to the goal area" />
<goal id="g6" min="1" ds="shot at the opponent's goal" />

</plan>
</goal>
...

46

Functional specification – Mission
Programming Organization

▶ Mission definition (mission tag) in the context of a scheme
definition, is composed of:

– identifier of the mission (id attribute of mission tag)
– cardinality of the mission min (0 is default), max (unlimited is default)

specifying the number of agents that can be committed to the mission
– the set of goal identifiers (goal tag) that belong to the mission

Example

<scheme id="sideAttack">
... the goals ...

<mission id="m1" min="1" max="1">
<goal id="scoreGoal" /> <goal id="g1" />
<goal id="g3" /> ...

</mission>
...

</scheme>

47

Normative specification
Programming Organization

▶ Explicit relation between the functional and structural
specifications

▶ Permissions and obligations to commit to missions in the context
of a role

▶ The normative specification makes explicit the normative
dimension of a role

▶ normative-specification section:
– sequence of the norm specifications participating to the governance of the

organisation

Example

<normative-specification>
<norm id="n1" ... />
...

<norm id="..." ... />
</normative-specification>

48

Normative specification – Norm
Programming Organization

▶ Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:

– the identifier of the norm (id)
– the type of the norm (type) with obligation, permission as possible values
– optionally a condition of activation (condition) with the following possible

expressions:
▶ checking of properties of the organisation (e.g. #role_compatibility,

#mission_cardinality, #role_cardinality, #goal_non_compliance)
; unregimentation of organisation properties !!!
▶ (un)fulfillment of an obligation stated in a particular norm (unfulfilled,

fulfilled)
– the identifier of the role (role) on which the role is applied
– the identifier of the mission (mission) concerned by the norm
– optionally a time constraint (time-constraint)

49

Norm – example
Programming Organization

▶ Any agent playing back is obliged to commit to mission m1 and
achieve its goals within 1 minute

<norm id = "n1" type="obligation"
role="back" mission="m1" time-constraint="1 minute"/>

▶ Any agent playing left is obliged to commit to mission m2 and
achieve its goals within 1 day

<norm id = "n2" type="obligation"
role="left" mission="m2" time-constraint="1 day"/>

▶ Any agent playing coach is obliged to commit to mission ms and
achieve its goals within 3 hour in case obligation of norm n2 has
not been fulfilled

<norm id = "n4" type="obligation"
condition="unfulfilled(obligation(_,n2,_,_))"
role="coach" mission="ms" time-constraint="3 hour"/>

50

Normative specification – NPL
Programming Organization

Norms can be written in Normative Programming Language (NPL):
▶ an activation condition
▶ a consequence

– regimentations (fail)
– obligations (obligation)

▶ terms starting with an upper case letter are variables

Example (Norm)

norm n1: plays(A,writer,G) -> fail.

or

norm n1: plays(A,writer,G)
-> obligation(A,n1,plays(A,editor,G),

`now + 3 min`).

51

Normative specification – NPL
Programming Organization

Example (NPL Program)

<npl-norms>
a :- t & k.
norm npl1: a & v(X) ->

obligation(bob,true,g(X),`now`+`1 day`).
norm npl2: a & b -> fail(test).

</npl-norms>

52

Organisation entity dynamics
Programming Organization

1. Organisation is created (by the agents)
– instances of groups
– instances of schemes

2. Agents enter into groups adopting roles
3. When a group is well formed, it may become responsible for

schemes
– Agents from the group are then obliged to commit to missions in the scheme

4. Agents commit to missions
5. Agents fulfil mission’s goals
6. Agents leave schemes and groups
7. Schemes and groups instances are destroyed

53

Goal dynamics
Programming Organization

waiting

satisfiedimpossible

enabled

waiting initial state
enabled goal pre-conditions are satisfied &

scheme is well-formed
satisfied agents committed to the goal have achieved it

impossible the goal is impossible to be satisfied
Note: goal state from the Organization point of view may be different
of the goal state from the Agent point of view

54

Norm dynamics
Programming Organization

d > nowactive

fulfilled

unfulfilled

inactive

g

¬ ø

ø

norm n : ϕ −> obligation(a, r,g,d)

▶ ϕ: activation condition of the norm (e.g. play a role)
▶ g: the goal of the obligation (e.g. commit to a mission)
▶ d: the deadline of the obligation

55

Integrating A & O dimensions
Deeper walk in JaCaMo meta-model

dynamic relation

composition

participate

Agent

Agent

GoalBelief

Action

Organisation

Group Scheme

Role Goal

Organisation

Norm

regulate

Concept

Dimension

coordinate

Interaction

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Event
*

*

*

*

*

Mission *

*

Link

56

Programming Organization

Agent integration mechanisms allow agents to be aware of and to
deliberate on:
▶ entering/exiting the organisation
▶ modification of the organisation
▶ obedience/violation of norms
▶ sanctioning/rewarding other agents

e.g. J -Moise+ [Hübner et al., 2007], Autonomy based
reasoning [Carabelea, 2007], ProsA2 Agent-based reasoning on
norms [Ossowski, 1999], ...

57

Organization actions and beliefs
Deeper walk in JaCaMo meta-model

▶ Observable Properties:
– group(group_id,group_type,artid): list of the group_id of group_type that

exist in the organizational entity
– scheme(scheme_id,scheme_type,artid): list of the scheme_id of

scheme_type that exist in the organizational entity
▶ Operations:

– createGroup(group) (resp. removeGroup(grid)): attempts to create (resp.
remove) group in the organization

– createScheme(scheme) (resp. removeScheme(schid)): attempts to create
(resp. remove) scheme in the organization

Note: available through OrgBoard Artifact created when creating an
organization

58

Group actions and beliefs
Deeper walk in JaCaMo meta-model

▶ Observable Properties:
– specification: group spec. in the OS
– player: list of play(agent, role, group)
– schemes: list of scheme identifiers that the group is responsible for
– subgroups, parentGroup, formationStatus (if the group is well formed or not)

▶ Operations:
– adoptRole(role) (resp. leaveRole(role)): attempts to adopt (resp. leave) role

in the group
– addScheme(schid) (resp. removeScheme(schid)): attempts to set (resp.

unset) the group responsible for the scheme managed by the SchemeBoard
schId

– setParentGroup(groupid), setOwner(agtid), destroy

Note: available through GroupBoard Artifact created when creating a
group in an organization

59

Scheme actions and beliefs
Deeper walk in JaCaMo meta-model

▶ Observable Properties:
– specification: scheme spec. in the OS
– commitments: list of commitment(agent, mission, scheme)
– groups: list of groups resp. for the scheme
– goalState: list of goals’ current state
– goalArgument(schemeId,goalId,argId,value): added only if the argument

has a value, usually defined by the operation setArgumentValue
– obligations: list of active obligations in the scheme

(obligation(agt,norm,goal,deadline))
– permissions: list of active permissions in the scheme

(permission(agt,norm,goal,deadline))
– goalArgument: value of goals’ arguments, defined by the operation

setArgumentValue
▶ Operations:

– commitMission(mission) (resp. leaveMission): attempts to “commit” (resp
“leave”) a mission in the scheme

– goalAchieved(goal): declares that goal is achieved
– setArgumentValue(goal, argument, value): defines the value of goal’s

argument
– resetGoal(goal) (reset the status of a goal), destroy

Note: available in SchemeBoard Artifact created when creating a
scheme in an organization

60

Norm actions and beliefs
Deeper walk in JaCaMo meta-model

▶ Observable Properties:
– obligation: current active obligations

▶ Operations:
– load(nplprogram)
– addFact (resp. removeFact)

Note: available in Normative board managing obligations/permissions
defined in the normative specification
▶ automatically created when a group becomes responsible for a

scheme
▶ or when loading any NPL program

61

Integrating O & E dimensions
Deeper walk in JaCaMo meta-model

dynamic relation

composition

Organisation

Group Scheme

Role Goal

Organisation

Norm

co
un

t-a
s

em
po

we
r

Concept

Dimension

Environment

Workspace

Operation

Environment

Artifact

Observable
property

Interaction

*

*

*

*

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Manual

Observable
event

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Mission *

*

Link

Transforming organisations
into embodied
organisations
[de Brito et al., 2012],
[Piunti et al., 2009],
[Okuyama et al., 2008] so
that:
▶ organisation may act

on the environment
(e.g. enact rules,
regimentation)

▶ environment may act
on the organisation
(e.g. count-as rules)
based on Situated
Artificial Institu-
tion [de Brito et al., 2015]

62

Outline

Programming Agents

Programming Environment

Programming Organization

Advanced practice of JaCaMo

Conclusion and Perspective

63

Advanced practice of JaCaMo
▶ Playing with Dimensions of Coordination (available in

doc/tutorials/coordination)
– Illustration of different approaches to coordinate agents in JaCaMo taking

profit of the three programming dimensions of the platform, that is to say:
▶ coordinating by focusing on agent (e.g. direct message passing),
▶ coordinating by focusing on the environment (e.g. coordination

artifact),
▶ coordinating by focusing on the organisation (e.g. coordination

strategies within organisation specification)
▶ BDI Hello World

– Illustration of how the BDI model is used in the JaCaMo Agent programming
language exploring the BDI features of Jason.

▶ Gold Miners (available also in doc/tutorials/gold-miners)
– Illustration of some of the features of the JaCaMo Agent Programming

Language through the development and refinement of the Gold Miners
contest scenario implementation

▶ Building House (available also in doc/tutorials/house-building)
– Illustration of using JaCaMo for negotiating contracts and monitoring their

execution

64

https://github.com/jacamo-lang/jacamo/blob/master/doc/tutorials/coordination/readme.adoc
https://github.com/jason-lang/jason/blob/master/doc/tutorials/hello-bdi/readme.adoc
https://github.com/jacamo-lang/jacamo/blob/master/doc/tutorials/gold-miners/readme.adoc
https://github.com/jacamo-lang/jacamo/tree/master/doc/tutorials/house-building

Outline

Programming Agents

Programming Environment

Programming Organization

Advanced practice of JaCaMo

Conclusion and Perspective

65

Conclusions

▶ MAS is not only agents
▶ MAS is not only organisation
▶ MAS is not only environment
▶ MAS is not only interaction

MAS has many dimensions
All as first class entities

66

Conclusions

Multi-Agent Oriented Programming proposes a seamless integration
of different abstractions that brings interesting features to program
collective autonomous systems:
▶ Separation of concerns between Agent, Environment,

Organisation and Interaction
▶ Openness and heterogeneity
▶ Flexibility, adaptation, rich coordination and regulation driven by

agents, environment, interactions or organisations
▶ Inclusion of Physical, Digital and Human worlds to define

socio-cognitive, physical and digital systems
▶ Programming features: Modularity, extensibility, reusability,

readability, ...

67

Some open issues & Perspectives

Engineering perspective:
▶ Debugging, Performance, ...
▶ Life cycle of MAS (from requirement to maintenance) ; software

engineering tools and methods
▶ Shift from Agent-Oriented Sofware Engineering to Multi-Agent

Oriented Software Engineering where all the dimensions A, E, I,
O may guide each step of the process (cf.
[Uez and Hübner, 2014])

▶ Evaluation & Verification of MAO programmed applications,
▶ Integrating with other technologies
▶ Handle Scalability, Robustness

68

Multi-Agent Oriented Programming

O. Boissier

Univ. Lyon, IMT Mines Saint-Etienne, LaHC UMR CNRS 5516, France

in tight collaboration with R.H. Bordini2, J.F. Hübner3, A. Ricci4

2 Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
3 Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

4 University of Bologna (UNIBO), Bologna, Italy

Winter 2019

UMR • CNRS • 5516 • SAINT-ETIENNE

69

http://www.emse.fr/~boissier/
https://www.inf.pucrs.br/r.bordini/Rafael_Bordini/Welcome.html
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/

Bibliography I
Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A. (2011).
Multi-agent oriented programming with jacamo.
Science of Computer Programming, pages –.

Bordini, R. H., Hübner, J. F., and Wooldrige, M. (2007).
Programming Multi-Agent Systems in AgentSpeak using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

Carabelea, C. (2007).
Reasoning about autonomy in open multi-agent systems - an approach based on
the social power theory.
in french, ENS Mines Saint-Etienne.

de Brito, M., Hübner, J. F., and Boissier, O. (2015).
Bringing constitutive dynamics to situated artificial institutions.
In Proc. of 17th Portuguese Conference on Artificial Intelligence (EPIA 2015),
volume 9273 of LNCS, pages 624–637. Springer.

de Brito, M., Hübner, J. F., and Bordini, R. H. (2012).
Programming institutional facts in multi-agent systems.
In COIN-12, Proceedings.

70

Bibliography II

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009).
Instrumenting Multi-Agent Organisations with Organisational Artifacts and Agents.

Journal of Autonomous Agents and Multi-Agent Systems.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2007).
Developing Organised Multi-Agent Systems Using the MOISE+ Model:
Programming Issues at the System and Agent Levels.
Agent-Oriented Software Engineering, 1(3/4):370–395.

Okuyama, F. Y., Bordini, R. H., and da Rocha Costa, A. C. (2008).
A distributed normative infrastructure for situated multi-agent organisations.
In Baldoni, M., Son, T. C., van Riemsdijk, M. B., and Winikoff, M., editors, DALT,
volume 5397 of Lecture Notes in Computer Science, pages 29–46. Springer.

Omicini, A., Ricci, A., and Viroli, M. (2008).
Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

71

Bibliography III

Ossowski, S. (1999).
Co-ordination in Artificial Agent Societies: Social Structures and Its Implications
for Autonomous Problem-Solving Agents, volume 1535 of LNAI.
Springer.

Piunti, M., Ricci, A., Boissier, O., and Hübner, J. F. (2009).
Embodied organisations in mas environments.
In Braubach, L., van der Hoek, W., Petta, P., and Pokahr, A., editors, Proceedings
of 7th German conference on Multi-Agent System Technologies (MATES 09),
Hamburg, Germany, September 9-11, volume 5774 of LNCS, pages 115–127.
Springer.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009).
Environment programming in CArtAgO.
In Multi-Agent Programming: Languages,Platforms and Applications,Vol.2.
Springer.

72

Bibliography IV

Uez, D. M. and Hübner, J. F. (2014).
Environments and organizations in multi-agent systems: From modelling to code.
In Dalpiaz, F., Dix, J., and van Riemsdijk, M. B., editors, Engineering Multi-Agent
Systems - Second International Workshop, EMAS 2014, Paris, France, May 5-6,
2014, Revised Selected Papers, volume 8758 of Lecture Notes in Computer
Science, pages 181–203. Springer.

73

	Programming Agents
	Programming Environment
	Programming Organization
	Advanced practice of JaCaMo
	Conclusion and Perspective

