
Multi-Agent Oriented Programming
– Integrating Intelligent Systems with MAS –

O. Boissier

Univ. Lyon, IMT Mines Saint-Etienne, LaHC UMR CNRS 5516, France

CPS2 M1 – Winter 2020

UMR • CNRS • 5516 • SAINT-ETIENNE

http://www.emse.fr/~boissier/

Integrating Intelligent Systems
Multi-Agent Oriented Programming &

JaCaMo

Outline

Introduction

Integrating Libraries

Integrating Frameworks

Integrating within Platforms

3

Integrating MAOP and Existing Technologies
Introduction

How to integrate MAOP and the supporting technologies – JaCaMo in
this case – with existing libraries and technologies, based on other
paradigms?
Integration can be in two directions:

I either embedding inside the MAS program some existing
technology such as a library or a framework,

I or integrating the MAS inside some existing platform.

In what follows, we will:

I Discover guidelines about integration depending on the specific
technology to integrate

I Discuss some cases in specific application domains

4

MAOP: Concepts and Relations
Introduction

dynamic relation

composition

Agent

Agent

GoalBelief

Action

Organisation

Group Scheme

Role Goal

Organisation

Norm

Concept

Dimension

Environment

Workspace

Operation

Environment

Artifact

Observable
property

Interaction

*

*

*

*

**

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

5

MAOP: Dynamics
Introduction

role
organisation

mission

scheme

workspace

artifact

agent
Agent Control

Cycle
Agent-Agent
Interaction

Cycle

Organisation-Agent
Cycle

Environment-Agent
Cycle

6

What to integrate?
Introduction

I Library: functionality provided by some module exposing some kind
of interface/API, without introducing any control issue.
I Example: library for effectively managing JSON data objects.

I Software framework: reusable software environment meant to
facilitate the development of software applications, by means of
generic functionality that can be changed by additional user-written
code. Differently from simple libraries, software frameworks
typically introduce also some kind of control architecture, defining
how the application is executed.

I Example: frameworks for developing GUI-based applications
(JavaFX), mobile apps (Android), event-driven asynchronous
applications vert.x.

I Application Platform: software framework that provide a core
technology on which software developers can build programs for
some specific platform.

7

https://openjfx.io
https://developer.android.com
https://vertx.io

Two Ways for Integration using MAOP
Introduction

Two ways to integrate existing libraries and frameworks - eventually
written in mainstream programming languages:

I Agent extension: the integration is realised by extending the
agents’ capabilities customising either their architecture or their set
of internal actions to wrap the technology to be integrated.
; an agent can exploit the technology as its new personal
capability.

I Artifact embedding: the integration is realised by designing and
implementing new artifacts wrapping the technology to be
integrated.
; an agent can exploit and interact with the integrated
technologies as resources/tools part of their environment, possibly
to be shared with other agents.

8

Agent extension vs. Artifact embedding
Introduction

From a technical point of view, there are important differences about
how the code is executed when using either internal actions or artifacts.

I With artifact embedding, the code, wrapped into operations, is
executed by a thread of control of the environment runtime,
asynchronously.

I With agent extension, the code is executed directly by the thread
of control of the reasoning cycle, in a synchronous way.

9

Agent extension vs. Artifact embedding (contd)
Introduction

I Agent extension has better performance: no overhead caused by
context switches and the computational cost is equivalent to a
simple (method) call.

I Agent extension of functionalities that could be heavy/long term
from a computational point of view may have impact on the
reasoning cycle execution and then on the reactivity of the agent to
perceive events
; use artifact embedding, offloading on the artifacts of
computational load.

I Artifact embedding is more convenient when the library to be
integrated can be more useful as a tool which could be shared and
concurrently used by multiple agents or (possibly stateful) tools
embedding long-term heavy computations.

10

Outline

Introduction

Integrating Libraries

Integrating Frameworks

Integrating within Platforms

11

Integrating using Agent Extension
Integrating Libraries

Agent extension is straightforward when the functionality is about some
state-less function that extends the agent capabilities.

I Ex: internal action json_to_list to parse JSON data into a list:

package json_tools;
public class json_to_list extends DefaultInternalAction {

public Object execute(TransitionSystem ts,
Unifier un, Term[] args) throws Exception {

... // the code that implements the internal action
}}

I On the agent side:

test_json <- json_tools.json_to_list(
"{ \"name\": \"Sofia\", \"age\": 11 }", L);
.println(L). // the list L is [name("Sofia"), age(11)]

12

Integrating using Artefact Embedding
Integrating Libraries

Enrich the agent capabilities with the ability to compute the
Fast-Fourier-Transform, to convert and analyse a signal from its original
domain (time or space) to a representation in the frequency domain.

I Library effectively implementing the algorithm (e.g. open-source
Apache Commons Mathematics Library can be quite computational
expensive

I Libraries can be either based on Java or JVM-based languages or
even other languages, exploiting the Java
Foreign-Function-Interface (FFI) API to integrate them.

I The library can be packaged as a FFTCalculator artifact, providing
operations to make the transformation, making the result available
as action feedback of a transform operation and/or as observable
property of the artifact.

13

https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/

Integrating using Artefact Embedding (contd)
Integrating Libraries

public class FFTCalculator extends Artifact {
private FastFourierTransformer trf;
void init(){
trf = new FastFourierTransformer(DftNormalization.STANDARD);

}
@OPERATION void fftTransform(double[] f,

OpFeedbackParam<Complex[]> r) {
Complex[] res = trf.transform(f,TransformType.FORWARD);
r.set(res);

}
// aux function to manage data structures
@OPERATION void getReal(Complex[] data,

OpFeedbackParam<Double[]> r) { ... }
@OPERATION void getComplex(Complex[] data,

OpFeedbackParam<Double[]> r){ ... }
}

14

Integrating using Artefact Embedding (contd)
Integrating Libraries

An agent creates a FFTCalculator and uses it to compute the Fast
Fourier Transform given an array of double and prints on the console the
result, as a list of complex numbers (represented by the Complex class).

+!test_fft
<- makeArtifact("calc","FFTCalculator",[]);

cartago.new_array("double[]",[5.0, -2.0, 1.0, 2.0], Data);
fftTransform(Data, Res);
!print_result(Res). // printing: (6)(4 + 4i)(6)(4-4i)

+!print_result([]).
+!print_result([V|T]) <-

cartago.invoke_obj(V,getReal,Re);
cartago.invoke_obj(V,getImaginary,Im);
!print_complex(Re,Im);
!print_result(T).

+!print_complex(Re,0) <- print("(", Re, ")").
+!print_complex(0,Im) <- print("(", Im, "j)").
+!print_complex(Re,Im) : Im < 0 <- print("(",Re," - ",-Im,"i)").
+!print_complex(Re,Im) <- print("(", Re, " + ",Im, "i)").

15

Java Objects on the Agent Side
Integrating Libraries

I JaCaMo provides a set of internal actions packaged inside the
cartago library

I The internal actions to create and manipulate Java objects are part
of the CArtAgO framework, referred as JavaLibrary that makes it
possible to

I instantiate Java objects (cartago.new_obj);
I instantiate arrays (cartago.new_array);
I invoke methods on objects (cartago.invoke_obj).

I Detailed information about the JavaLibrary can be found in the
JaCaMo documentation.

16

Integrating Libraries with their own Threads
Integrating Libraries

More complex libraries could exploit asynchronous programming to
provide some of their functionalities, using under-the-hood some threads
of control to that purpose.
I The artifact API beginExtSession/endExtSession makes it possible for

such external threads to safely:
I change the state of an artifact,
I change the state of observable properties,
I generate signals to model asynchronous events.

17

Outline

Introduction

Integrating Libraries

Integrating Frameworks

Integrating within Platforms

18

Integrating Frameworks
I The management of callbacks and interaction with external threads

is frequent when integrating frameworks/platforms, which may
enforce the full control architecture of the application.

I Artifact embedding makes it possible to have a clear separation
between the specific execution logic provided by a framework and
MAS execution.

I The artifact provides a high-level interface for agents to work with
the framework (e.g. main window in case of a GUI-based
application).

I The use of an observable property enables to keep track and make
observable to agents the state of the application (e.g. "pressed" or
"not_pressed" for a button)

I The artifact functions as a bridge to the framework, implementing
(and hiding with respect to the MAS) the machinery to make the
framework working.

I The external session is used to update the observable state of the
artifact.

19

Outline

Introduction

Integrating Libraries

Integrating Frameworks

Integrating within Platforms

20

Integrating within Platforms
Integration of the MAS:
I either as a component of the platform,
I or by executing the MAS on a different process and implementing

components inside the platform that function as bridges exploiting
some Inter-Process Communication (IPC) mechanism (such as
sockets).

MAS as a Component of the platform:
I Use of the JaCaMo API jacamo.infra.JaCaMoLauncher for spawning

programmatically a MAS
public class LaunchMAS {

public static void main (String args[]) throws Exception {
jacamo.infra.JaCaMoLauncher.main(

new String[]{ "test-mas.jcm" });
}}

MAS as a different process:
I Use of boundary artifacts to implement the bridge between the

systems, embedding/hiding the use of
Inter-Process-Communication mechanisms and protocols to
interact with the external platform.

21

Bibliography I

22

	Introduction
	Integrating Libraries
	Integrating Frameworks
	Integrating within Platforms

