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Integrating MAOP and Existing Technologies
Introduction

How to integrate MAOP and the supporting technologies – JaCaMo in
this case – with existing libraries and technologies, based on other
paradigms?
Integration can be in two directions:

I either embedding inside the MAS program some existing
technology such as a library or a framework,

I or integrating the MAS inside some existing platform.

In what follows, we will:

I Discover guidelines about integration depending on the specific
technology to integrate

I Discuss some cases in specific application domains
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MAOP: Concepts and Relations
Introduction
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MAOP: Dynamics
Introduction
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What to integrate?
Introduction

I Library: functionality provided by some module exposing some kind
of interface/API, without introducing any control issue.
I Example: library for effectively managing JSON data objects.

I Software framework: reusable software environment meant to
facilitate the development of software applications, by means of
generic functionality that can be changed by additional user-written
code. Differently from simple libraries, software frameworks
typically introduce also some kind of control architecture, defining
how the application is executed.

I Example: frameworks for developing GUI-based applications
(JavaFX), mobile apps (Android), event-driven asynchronous
applications vert.x.

I Application Platform: software framework that provide a core
technology on which software developers can build programs for
some specific platform.
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Two Ways for Integration using MAOP
Introduction

Two ways to integrate existing libraries and frameworks - eventually
written in mainstream programming languages:

I Agent extension: the integration is realised by extending the
agents’ capabilities customising either their architecture or their set
of internal actions to wrap the technology to be integrated.
; an agent can exploit the technology as its new personal
capability.

I Artifact embedding: the integration is realised by designing and
implementing new artifacts wrapping the technology to be
integrated.
; an agent can exploit and interact with the integrated
technologies as resources/tools part of their environment, possibly
to be shared with other agents.
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Agent extension vs. Artifact embedding
Introduction

From a technical point of view, there are important differences about
how the code is executed when using either internal actions or artifacts.

I With artifact embedding, the code, wrapped into operations, is
executed by a thread of control of the environment runtime,
asynchronously.

I With agent extension, the code is executed directly by the thread
of control of the reasoning cycle, in a synchronous way.
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Agent extension vs. Artifact embedding (contd)
Introduction

I Agent extension has better performance: no overhead caused by
context switches and the computational cost is equivalent to a
simple (method) call.

I Agent extension of functionalities that could be heavy/long term
from a computational point of view may have impact on the
reasoning cycle execution and then on the reactivity of the agent to
perceive events
; use artifact embedding, offloading on the artifacts of
computational load.

I Artifact embedding is more convenient when the library to be
integrated can be more useful as a tool which could be shared and
concurrently used by multiple agents or (possibly stateful) tools
embedding long-term heavy computations.
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Integrating using Agent Extension
Integrating Libraries

Agent extension is straightforward when the functionality is about some
state-less function that extends the agent capabilities.

I Ex: internal action json_to_list to parse JSON data into a list:

package json_tools;
public class json_to_list extends DefaultInternalAction {

public Object execute(TransitionSystem ts,
Unifier un, Term[] args) throws Exception {

... // the code that implements the internal action
}}

I On the agent side:

test_json <- json_tools.json_to_list(
"{ \"name\": \"Sofia\", \"age\": 11 }", L);
.println(L). // the list L is [ name("Sofia"), age(11) ]

12



Integrating using Artefact Embedding
Integrating Libraries

Enrich the agent capabilities with the ability to compute the
Fast-Fourier-Transform, to convert and analyse a signal from its original
domain (time or space) to a representation in the frequency domain.

I Library effectively implementing the algorithm (e.g. open-source
Apache Commons Mathematics Library can be quite computational
expensive

I Libraries can be either based on Java or JVM-based languages or
even other languages, exploiting the Java
Foreign-Function-Interface (FFI) API to integrate them.

I The library can be packaged as a FFTCalculator artifact, providing
operations to make the transformation, making the result available
as action feedback of a transform operation and/or as observable
property of the artifact.

13

https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/


Integrating using Artefact Embedding (contd)
Integrating Libraries

public class FFTCalculator extends Artifact {
private FastFourierTransformer trf;
void init(){
trf = new FastFourierTransformer(DftNormalization.STANDARD);

}
@OPERATION void fftTransform(double[] f,

OpFeedbackParam<Complex[]> r) {
Complex[] res = trf.transform(f,TransformType.FORWARD);
r.set(res);

}
// aux function to manage data structures
@OPERATION void getReal(Complex[] data,

OpFeedbackParam<Double[]> r) { ... }
@OPERATION void getComplex(Complex[] data,

OpFeedbackParam<Double[]> r){ ... }
}
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Integrating using Artefact Embedding (contd)
Integrating Libraries

An agent creates a FFTCalculator and uses it to compute the Fast
Fourier Transform given an array of double and prints on the console the
result, as a list of complex numbers (represented by the Complex class).

+!test_fft
<- makeArtifact("calc","FFTCalculator",[]);

cartago.new_array("double[]",[5.0, -2.0, 1.0, 2.0], Data);
fftTransform(Data, Res);
!print_result(Res). // printing: ( 6 )( 4 + 4i )( 6 )( 4-4i )

+!print_result([]).
+!print_result([V|T]) <-

cartago.invoke_obj(V,getReal,Re);
cartago.invoke_obj(V,getImaginary,Im);
!print_complex(Re,Im);
!print_result(T).

+!print_complex(Re,0) <- print("( ", Re, " )").
+!print_complex(0,Im) <- print("( ", Im, "j )").
+!print_complex(Re,Im) : Im < 0 <- print("( ",Re," - ",-Im,"i )").
+!print_complex(Re,Im) <- print("( ", Re, " + ",Im, "i )").
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Java Objects on the Agent Side
Integrating Libraries

I JaCaMo provides a set of internal actions packaged inside the
cartago library

I The internal actions to create and manipulate Java objects are part
of the CArtAgO framework, referred as JavaLibrary that makes it
possible to

I instantiate Java objects (cartago.new_obj);
I instantiate arrays (cartago.new_array);
I invoke methods on objects (cartago.invoke_obj).

I Detailed information about the JavaLibrary can be found in the
JaCaMo documentation.
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Integrating Libraries with their own Threads
Integrating Libraries

More complex libraries could exploit asynchronous programming to
provide some of their functionalities, using under-the-hood some threads
of control to that purpose.
I The artifact API beginExtSession/endExtSession makes it possible for

such external threads to safely:
I change the state of an artifact,
I change the state of observable properties,
I generate signals to model asynchronous events.
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Integrating Frameworks
I The management of callbacks and interaction with external threads

is frequent when integrating frameworks/platforms, which may
enforce the full control architecture of the application.

I Artifact embedding makes it possible to have a clear separation
between the specific execution logic provided by a framework and
MAS execution.

I The artifact provides a high-level interface for agents to work with
the framework (e.g. main window in case of a GUI-based
application).

I The use of an observable property enables to keep track and make
observable to agents the state of the application (e.g. "pressed" or
"not_pressed" for a button)

I The artifact functions as a bridge to the framework, implementing
(and hiding with respect to the MAS) the machinery to make the
framework working.

I The external session is used to update the observable state of the
artifact.
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Integrating within Platforms
Integration of the MAS:
I either as a component of the platform,
I or by executing the MAS on a different process and implementing

components inside the platform that function as bridges exploiting
some Inter-Process Communication (IPC) mechanism (such as
sockets).

MAS as a Component of the platform:
I Use of the JaCaMo API jacamo.infra.JaCaMoLauncher for spawning

programmatically a MAS
public class LaunchMAS {

public static void main (String args[]) throws Exception {
jacamo.infra.JaCaMoLauncher.main(

new String[]{ "test-mas.jcm" });
}}

MAS as a different process:
I Use of boundary artifacts to implement the bridge between the

systems, embedding/hiding the use of
Inter-Process-Communication mechanisms and protocols to
interact with the external platform.
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