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Back to the Notion of Environment in MAS

I The notion of environment is intrinsically related to the notion of
agent and multi-agent system
I “An agent is a computer system that is situated in some

environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldridge, 2002]

I “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the environment
through effectors. ” [Russell and Norvig, 2003]

I Including both physical and software environments
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Single Agent Perspective
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I Perception
I process inside agent inside of attaining awareness or understanding

sensory information, creating percepts perceived form of external
stimuli or their absence

I Actions
I the means to affect, change or inspect the environment

5



Multi-Agent Perspective

I In evidence
I overlapping spheres of visibility and influence
I ..which means: interaction
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Why Environment Programming

I Basic level

I to create testbeds for real/external environments
I to ease the interface/interaction with existing software

environments

I Advanced level

I to uniformly encapsulate and modularise functionalities of the
MAS out of the agents
I typically related to interaction, coordination, organisation, security
I externalisation

I this implies changing the perspective on the environment
I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments
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Environment Programming: General Issues

I Defining the interface

I actions, perceptions
I data-model

I Defining the environment computational model & architecture

I how the environment works
I structure, behaviour, topology
I core aspects to face: concurrency, distribution

I Defining the environment programming model

I how to program the environment

8



Outline

Fundamentals

Existing approaches
Basic Level
Advanced Level

9



Outline

Fundamentals

Existing approaches
Basic Level
Advanced Level

10



Basic Level Overview
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Basic Level: Features

I Environment conceptually conceived as a single monolitic block
I providing actions, generating percepts

I Environment API
I to define the set of actions and program actions computational

behaviour
I which include the generation of percepts

I typically implemented using as single object/class in OO such as
Java
I method to execute actions
I fields to store the environment state

I available in many agent programming languages/frameworks
I e.g., Jason, 2APL, GOAL, JADEX
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An Example: Jason [Bordini et al., 2007] (without
JaCaMo)

I Flexible Java-based Environment API
I Environment base class to be specialised

I executeAction method to specify action semantics
I addPercept to generate percepts

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment
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Example (continued): MARS Environment in Jason

public class MarsEnv extends Environment {
  private MarsModel model;
  private MarsView  view;
  
  public void init(String[] args) {
        model = new MarsModel();
        view  = new MarsView(model);
        model.setView(view);
        updatePercepts();
  }
    
  public boolean executeAction(String ag, Structure action) {
    String func = action.getFunctor();
    if (func.equals("next")) {
      model.nextSlot();
    } else if (func.equals("move_towards")) {
      int x = (int)((NumberTerm)action.getTerm(0)).solve();
      int y = (int)((NumberTerm)action.getTerm(1)).solve();
      model.moveTowards(x,y);
    } else if (func.equals("pick")) {
      model.pickGarb();
    } else if (func.equals("drop")) {
      model.dropGarb();
    } else if (func.equals("burn")) {
      model.burnGarb();
    } else {
      return false;
    }
    
    updatePercepts();
    return true;
  }
  ...

  ...

    /* creates the agents perception 
     * based on the MarsModel */
  void updatePercepts() {

    clearPercepts();
        
    Location r1Loc = model.getAgPos(0);
    Location r2Loc = model.getAgPos(1);
        
    Literal pos1 =  Literal.parseLiteral
        ("pos(r1," + r1Loc.x + "," + r1Loc.y + ")");
    Literal pos2 = Literal.parseLiteral
        ("pos(r2," + r2Loc.x + "," + r2Loc.y + ")");

    addPercept(pos1);
    addPercept(pos2);

    if (model.hasGarbage(r1Loc)) {
      addPercept(Literal.parseLiteral("garbage(r1)"));
    }

    if (model.hasGarbage(r2Loc)) {
     addPercept(Literal.parseLiteral("garbage(r2)"));
    } 
  }

  class MarsModel extends GridWorldModel { ... }
    
  class MarsView extends GridWorldView { ... }    
}
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Example (continued): Jason Agents Playing on Mars

// mars robot 1

/* Initial beliefs */

at(P) :- pos(P,X,Y) & pos(r1,X,Y).

/* Initial goal */

!check(slots). 

/* Plans */

+!check(slots) : not garbage(r1)
   <- next(slot);
      !!check(slots).
+!check(slots). 

+garbage(r1) : not .desire(carry_to(r2))
   <- !carry_to(r2).
   
+!carry_to(R)   
   <- // remember where to go back
      ?pos(r1,X,Y); 
      -+pos(last,X,Y);
    
      // carry garbage to r2
      !take(garb,R);
    
      // goes back and continue to check
      !at(last); 
      !!check(slots).
...

...

+!take(S,L) : true
   <- !ensure_pick(S); 
      !at(L);
      drop(S).

+!ensure_pick(S) : garbage(r1)
   <- pick(garb);
      !ensure_pick(S).
+!ensure_pick(_).

+!at(L) : at(L).
+!at(L) <- ?pos(L,X,Y);
           move_towards(X,Y);
           !at(L).
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Another Example: 2APL [Dastani, 2008]

I 2APL
I BDI-based agent-oriented programming language integrating

declarative programming constructs (beliefs, goals) and imperative
style programming constructs (events, plans)

I Java-based Environment API
I Environment base class
I implementing actions as methods

I inside action methods external events can be generated to be
perceived by agents as percepts
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Example: Block-world Environment in 2APL

package blockworld;

public class Env extends apapl.Environment {

public void enter(String agent, Term x, Term y, Term c){...}

public Term sensePosition(String agent){...}

public Term pickup(String agent){...}

public void north(String agent){...}

  ... 

}
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2APL Agents in the block-world

BeliefUpdates:
  { bomb(X,Y) }         RemoveBomb(X,Y){ not bomb(X,Y) }
  { true }              AddBomb(X,Y)   { bomb(X,Y) }
  { carry(bomb) }       Drop( )        { not carry(bomb)}
  { not carry(bomb) }   PickUp( )      { carry(bomb) }

Beliefs:
  start(0,1).
  bomb(3,3).
  clean( blockWorld ) :- 
     not bomb(X,Y) , not carry(bomb).

Plans:
  B(start(X,Y)) ;
  @blockworld( enter( X, Y, blue ), L )

Goals:
  clean( blockWorld )

PG-rules:
  clean( blockWorld ) <- bomb( X, Y ) |
  {
    goto( X, Y );
    @blockworld( pickup( ), L1 );
    PickUp( );
    RemoveBomb( X, Y );
    goto( 0, 0 );
    @blockworld( drop( ), L2 );
    Drop( )
  }
...

...

PC-rules:
  goto( X, Y ) <- true |
  {
    @blockworld( sensePosition(), POS );
    B(POS = [A,B]);
    if B(A > X) then
    { @blockworld( west(), L );
      goto( X, Y )
    }
    else if B(A < X) then
    { @blockworld( east(), L );
      goto( X, Y )
    }
    else if B(B > Y) then
    { @blockworld( north(), L );
      goto( X, Y )
    }
    else if B(B < Y) then
    { @blockworld( south(), L );
      goto( X, Y )
    }
  }

  ...
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Environment Interface Standard – EIS Initiative

I Recent initiative supported by main APL research
groups [Behrens et al., 2010]
I GOAL, 2APL, GOAL, JADEX, JASON

I Goal of the initiative
I design and develop a generic environment interface standard

I a standard to connect agents to environments
I ... environments such as agent testbeds, commercial applications,

video games..

I Principles
I wrapping already existing environments
I creating new environments by connecting already existing apps
I creating new environments from scratch

I Requirements
I generic
I reuse
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EIS Meta-Model

I By means of the Env. Interface agents perform actions and collect
percepts
I actually actions/percepts are issued to controllable entities in

environment model
I represent the agent bodies, with effectors and sensors
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Environment Interface Features

I Interface functions
I attaching, detaching, and notifying observers (software design

pattern);
I registering and unregistering agents;
I adding and removing entities;
I managing the agents-entities-relation;
I performing actions and retrieving percepts;
I managing the environment

I Interface Intermediate language
I to facilitate data-exchange
I encoding percepts, actions, events
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Advanced Level Overview

I Vision: environment as a first-class abstraction in
MAS [Weyns et al., 2007, Ricci et al., 2010]

I application or endogenous environments, i.e. that environment
which is an explicit part of the MAS

I providing an exploitable design & programming abstraction to
build MAS applications

I Outcome

I distinguishing clearly between the responsibilities of agent and
environment
I separation of concerns

I improving the engineering practice
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Three Support Levels [Weyns et al., 2007]

I Basic interface support

I Abstraction support level

I Interaction-mediation support level
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Basic Interface Support

I The environment enables agents to access the deployment context
I i.e. the hardware and software and external resources with which

the MAS interacts
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Abstraction Support

I Bridges the conceptual gap between the agent abstraction and
low-level details of the deployment context
I shields low-level details of the deployment context
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Interaction-Mediation Support

I Regulate the access to shared resources
I Mediate interaction between agents
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Environment Definition Revised

Environment definition revised [Weyns et al., 2007]
The environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both the
interaction among agents and the access to resources
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Research on Environments for MAS

I Environments for Multi-Agent Systems research field / E4MAS
workshop series [Weyns et al., 2005]

I different themes and issues (see JAAMAS Special
Issue [Weyns and Parunak, 2007] for a good survey)
I mechanisms, architectures, infrastructures,

applications [Platon et al., 2007, Weyns and Holvoet, 2007,
Weyns and Holvoet, 2004, Viroli et al., 2007]

I the main perspective is (agent-oriented) software engineering

I In MAOP, role of the environment abstraction in MAS
programming

I environment programming
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Environment Programming

I Environment as first-class programming
abstraction [Ricci et al., 2010]

I software designers and engineers perspective
I endogenous environments (vs. exogenous one)
I programming MAS =

programming Agents + programming Environment
I ..but this will be extended to include OOP in next part

I Environment as first-class runtime abstraction for agents

I agent perspective
I to be observed, used, adapted, constructed, ...

I Defining computational and programming frameworks/models also
for the environment part
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Computational Frameworks for Environment
Programming: Issues

I Defining the environment interface

I actions, percepts, data model
I contract concept, as defined in software engineering contexts

(Design by Contract)

I Defining the environment computational model

I environment structure, behaviour

I Defining the environment distribution model

I topology
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Programming Models for the Environment: Desiderata

I Abstraction
I keeping the agent abstraction level e.g. no agents sharing and

calling OO objects
I effective programming models for controllable and observable

computational entities

I Modularity
I away from the monolithic and centralised view

I Orthogonality
I wrt agent models, architectures, platforms
I support for heterogeneous systems

I Dynamic extensibility
I dynamic construction, replacement, extension of environment parts
I support for open systems

I Reusability
I reuse of environment parts for different kinds of applications
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Existing Computational Frameworks

I AGRE / AGREEN / MASQ [Stratulat et al., 2009]
I AGRE – integrating the AGR (Agent-Group-Role) organisation

model with a notion of environment
I Environment used to represent both the physical and social part of

interaction
I AGREEN / MASQ – extending AGRE towards a unified

representation for physical, social and institutional environments
I Based on MadKit platform [Gutknecht and Ferber, 2000]

I GOLEM [Bromuri and Stathis, 2008]
I Logic-based framework to represent environments for situated

cognitive agents
I composite structure containing the interaction between cognitive

agents and objects
I A&A and CArtAgO [Ricci et al., 2010]

I introducing a computational notion of artifact to design and
implement agent environments
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