
Multi-Agent Oriented Programming
– Environment –

O. Boissier

Univ. Lyon, IMT Mines Saint-Etienne, LaHC UMR CNRS 5516, France

CPS2 M1 – Winter 2020

UMR • CNRS • 5516 • SAINT-ETIENNE

http://www.emse.fr/~boissier/

Multi-Agent Oriented Programming
Agent working environment: concepts and

approaches

Outline

Fundamentals

Existing approaches

3

Back to the Notion of Environment in MAS

I The notion of environment is intrinsically related to the notion of
agent and multi-agent system
I “An agent is a computer system that is situated in some

environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldridge, 2002]

I “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the environment
through effectors. ” [Russell and Norvig, 2003]

I Including both physical and software environments

4

Single Agent Perspective

ENVIRONMENT

feedback

actions

percepts
effectors / actuators

sensors

acti
on to

 d
o

PERCEPTION

DECISION

ACTION

I Perception
I process inside agent inside of attaining awareness or understanding

sensory information, creating percepts perceived form of external
stimuli or their absence

I Actions
I the means to affect, change or inspect the environment

5

Multi-Agent Perspective

I In evidence
I overlapping spheres of visibility and influence
I ..which means: interaction

6

Why Environment Programming

I Basic level

I to create testbeds for real/external environments
I to ease the interface/interaction with existing software

environments

I Advanced level

I to uniformly encapsulate and modularise functionalities of the
MAS out of the agents
I typically related to interaction, coordination, organisation, security
I externalisation

I this implies changing the perspective on the environment
I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments

7

Environment Programming: General Issues

I Defining the interface

I actions, perceptions
I data-model

I Defining the environment computational model & architecture

I how the environment works
I structure, behaviour, topology
I core aspects to face: concurrency, distribution

I Defining the environment programming model

I how to program the environment

8

Outline

Fundamentals

Existing approaches
Basic Level
Advanced Level

9

Outline

Fundamentals

Existing approaches
Basic Level
Advanced Level

10

Basic Level Overview

actions

percepts

SIMULATED

WORLD

OR

INTERFACE

OR

WRAPPER TO

EXISTING

TECHNOLOGY

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

MAS ENVIRONMENT

REAL WORLD
(PHYSICAL OR

COMPUTATIONAL)

mimicking

Example:

JAVA

PLATFORMAGENTS

MAS

11

Basic Level: Features

I Environment conceptually conceived as a single monolitic block
I providing actions, generating percepts

I Environment API
I to define the set of actions and program actions computational

behaviour
I which include the generation of percepts

I typically implemented using as single object/class in OO such as
Java
I method to execute actions
I fields to store the environment state

I available in many agent programming languages/frameworks
I e.g., Jason, 2APL, GOAL, JADEX

12

An Example: Jason [Bordini et al., 2007] (without
JaCaMo)

I Flexible Java-based Environment API
I Environment base class to be specialised

I executeAction method to specify action semantics
I addPercept to generate percepts

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment

13

Example (continued): MARS Environment in Jason

public class MarsEnv extends Environment {
 private MarsModel model;
 private MarsView view;

 public void init(String[] args) {
 model = new MarsModel();
 view = new MarsView(model);
 model.setView(view);
 updatePercepts();
 }

 public boolean executeAction(String ag, Structure action) {
 String func = action.getFunctor();
 if (func.equals("next")) {
 model.nextSlot();
 } else if (func.equals("move_towards")) {
 int x = (int)((NumberTerm)action.getTerm(0)).solve();
 int y = (int)((NumberTerm)action.getTerm(1)).solve();
 model.moveTowards(x,y);
 } else if (func.equals("pick")) {
 model.pickGarb();
 } else if (func.equals("drop")) {
 model.dropGarb();
 } else if (func.equals("burn")) {
 model.burnGarb();
 } else {
 return false;
 }

 updatePercepts();
 return true;
 }
 ...

 ...

 /* creates the agents perception
 * based on the MarsModel */
 void updatePercepts() {

 clearPercepts();

 Location r1Loc = model.getAgPos(0);
 Location r2Loc = model.getAgPos(1);

 Literal pos1 = Literal.parseLiteral
 ("pos(r1," + r1Loc.x + "," + r1Loc.y + ")");
 Literal pos2 = Literal.parseLiteral
 ("pos(r2," + r2Loc.x + "," + r2Loc.y + ")");

 addPercept(pos1);
 addPercept(pos2);

 if (model.hasGarbage(r1Loc)) {
 addPercept(Literal.parseLiteral("garbage(r1)"));
 }

 if (model.hasGarbage(r2Loc)) {
 addPercept(Literal.parseLiteral("garbage(r2)"));
 }
 }

 class MarsModel extends GridWorldModel { ... }

 class MarsView extends GridWorldView { ... }
}

14

Example (continued): Jason Agents Playing on Mars

// mars robot 1

/* Initial beliefs */

at(P) :- pos(P,X,Y) & pos(r1,X,Y).

/* Initial goal */

!check(slots).

/* Plans */

+!check(slots) : not garbage(r1)
 <- next(slot);
 !!check(slots).
+!check(slots).

+garbage(r1) : not .desire(carry_to(r2))
 <- !carry_to(r2).

+!carry_to(R)
 <- // remember where to go back
 ?pos(r1,X,Y);
 -+pos(last,X,Y);

 // carry garbage to r2
 !take(garb,R);

 // goes back and continue to check
 !at(last);
 !!check(slots).
...

...

+!take(S,L) : true
 <- !ensure_pick(S);
 !at(L);
 drop(S).

+!ensure_pick(S) : garbage(r1)
 <- pick(garb);
 !ensure_pick(S).
+!ensure_pick(_).

+!at(L) : at(L).
+!at(L) <- ?pos(L,X,Y);
 move_towards(X,Y);
 !at(L).

15

Another Example: 2APL [Dastani, 2008]

I 2APL
I BDI-based agent-oriented programming language integrating

declarative programming constructs (beliefs, goals) and imperative
style programming constructs (events, plans)

I Java-based Environment API
I Environment base class
I implementing actions as methods

I inside action methods external events can be generated to be
perceived by agents as percepts

16

Example: Block-world Environment in 2APL

package blockworld;

public class Env extends apapl.Environment {

public void enter(String agent, Term x, Term y, Term c){...}

public Term sensePosition(String agent){...}

public Term pickup(String agent){...}

public void north(String agent){...}

 ...

}

17

2APL Agents in the block-world

BeliefUpdates:
 { bomb(X,Y) } RemoveBomb(X,Y){ not bomb(X,Y) }
 { true } AddBomb(X,Y) { bomb(X,Y) }
 { carry(bomb) } Drop() { not carry(bomb)}
 { not carry(bomb) } PickUp() { carry(bomb) }

Beliefs:
 start(0,1).
 bomb(3,3).
 clean(blockWorld) :-
 not bomb(X,Y) , not carry(bomb).

Plans:
 B(start(X,Y)) ;
 @blockworld(enter(X, Y, blue), L)

Goals:
 clean(blockWorld)

PG-rules:
 clean(blockWorld) <- bomb(X, Y) |
 {
 goto(X, Y);
 @blockworld(pickup(), L1);
 PickUp();
 RemoveBomb(X, Y);
 goto(0, 0);
 @blockworld(drop(), L2);
 Drop()
 }
...

...

PC-rules:
 goto(X, Y) <- true |
 {
 @blockworld(sensePosition(), POS);
 B(POS = [A,B]);
 if B(A > X) then
 { @blockworld(west(), L);
 goto(X, Y)
 }
 else if B(A < X) then
 { @blockworld(east(), L);
 goto(X, Y)
 }
 else if B(B > Y) then
 { @blockworld(north(), L);
 goto(X, Y)
 }
 else if B(B < Y) then
 { @blockworld(south(), L);
 goto(X, Y)
 }
 }

 ...

18

Environment Interface Standard – EIS Initiative

I Recent initiative supported by main APL research
groups [Behrens et al., 2010]
I GOAL, 2APL, GOAL, JADEX, JASON

I Goal of the initiative
I design and develop a generic environment interface standard

I a standard to connect agents to environments
I ... environments such as agent testbeds, commercial applications,

video games..

I Principles
I wrapping already existing environments
I creating new environments by connecting already existing apps
I creating new environments from scratch

I Requirements
I generic
I reuse

19

EIS Meta-Model

I By means of the Env. Interface agents perform actions and collect
percepts
I actually actions/percepts are issued to controllable entities in

environment model
I represent the agent bodies, with effectors and sensors

20

Environment Interface Features

I Interface functions
I attaching, detaching, and notifying observers (software design

pattern);
I registering and unregistering agents;
I adding and removing entities;
I managing the agents-entities-relation;
I performing actions and retrieving percepts;
I managing the environment

I Interface Intermediate language
I to facilitate data-exchange
I encoding percepts, actions, events

21

Outline

Fundamentals

Existing approaches
Basic Level
Advanced Level

22

Advanced Level Overview

I Vision: environment as a first-class abstraction in
MAS [Weyns et al., 2007, Ricci et al., 2010]

I application or endogenous environments, i.e. that environment
which is an explicit part of the MAS

I providing an exploitable design & programming abstraction to
build MAS applications

I Outcome

I distinguishing clearly between the responsibilities of agent and
environment
I separation of concerns

I improving the engineering practice

23

Three Support Levels [Weyns et al., 2007]

I Basic interface support

I Abstraction support level

I Interaction-mediation support level

24

Basic Interface Support

I The environment enables agents to access the deployment context
I i.e. the hardware and software and external resources with which

the MAS interacts

25

Abstraction Support

I Bridges the conceptual gap between the agent abstraction and
low-level details of the deployment context
I shields low-level details of the deployment context

26

Interaction-Mediation Support

I Regulate the access to shared resources
I Mediate interaction between agents

27

Environment Definition Revised

Environment definition revised [Weyns et al., 2007]
The environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both the
interaction among agents and the access to resources

28

Research on Environments for MAS

I Environments for Multi-Agent Systems research field / E4MAS
workshop series [Weyns et al., 2005]

I different themes and issues (see JAAMAS Special
Issue [Weyns and Parunak, 2007] for a good survey)
I mechanisms, architectures, infrastructures,

applications [Platon et al., 2007, Weyns and Holvoet, 2007,
Weyns and Holvoet, 2004, Viroli et al., 2007]

I the main perspective is (agent-oriented) software engineering

I In MAOP, role of the environment abstraction in MAS
programming

I environment programming

29

Environment Programming

I Environment as first-class programming
abstraction [Ricci et al., 2010]

I software designers and engineers perspective
I endogenous environments (vs. exogenous one)
I programming MAS =

programming Agents + programming Environment
I ..but this will be extended to include OOP in next part

I Environment as first-class runtime abstraction for agents

I agent perspective
I to be observed, used, adapted, constructed, ...

I Defining computational and programming frameworks/models also
for the environment part

30

Computational Frameworks for Environment
Programming: Issues

I Defining the environment interface

I actions, percepts, data model
I contract concept, as defined in software engineering contexts

(Design by Contract)

I Defining the environment computational model

I environment structure, behaviour

I Defining the environment distribution model

I topology

31

Programming Models for the Environment: Desiderata

I Abstraction
I keeping the agent abstraction level e.g. no agents sharing and

calling OO objects
I effective programming models for controllable and observable

computational entities

I Modularity
I away from the monolithic and centralised view

I Orthogonality
I wrt agent models, architectures, platforms
I support for heterogeneous systems

I Dynamic extensibility
I dynamic construction, replacement, extension of environment parts
I support for open systems

I Reusability
I reuse of environment parts for different kinds of applications

32

Existing Computational Frameworks

I AGRE / AGREEN / MASQ [Stratulat et al., 2009]
I AGRE – integrating the AGR (Agent-Group-Role) organisation

model with a notion of environment
I Environment used to represent both the physical and social part of

interaction
I AGREEN / MASQ – extending AGRE towards a unified

representation for physical, social and institutional environments
I Based on MadKit platform [Gutknecht and Ferber, 2000]

I GOLEM [Bromuri and Stathis, 2008]
I Logic-based framework to represent environments for situated

cognitive agents
I composite structure containing the interaction between cognitive

agents and objects
I A&A and CArtAgO [Ricci et al., 2010]

I introducing a computational notion of artifact to design and
implement agent environments

33

Bibliography I

Behrens, T., Bordini, R., Braubach, L., Dastani, M., Dix, J., Hindriks, K.,
Hübner, J., and Pokahr, A. (2010).
An interface for agent-environment interaction.
In In Proceedings of International Workshop on Programming Multi-Agent
Systems (ProMAS-8).

Bordini, R., Hübner, J., and Wooldridge, M. (2007).
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Wiley-Interscience.

Bromuri, S. and Stathis, K. (2008).
Situating Cognitive Agents in GOLEM.
In Weyns, D., Brueckner, S., and Demazeau, Y., editors, Engineering
Environment-Mediated Multi-Agent Systems, volume 5049 of LNCS, pages
115–134. Springer Berlin / Heidelberg.

Dastani, M. (2008).
2APL: a practical agent programming language.
Autonomous Agent and Multi-Agent Systems, 16(3):214–248.

34

Bibliography II

Gutknecht, O. and Ferber, J. (2000).
The MADKIT agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55.

Platon, E., Mamei, M., Sabouret, N., Honiden, S., and Parunak, H. V. (2007).
Mechanisms for environments in multi-agent systems: Survey and
opportunities.
Autonomous Agents and Multi-Agent Systems, 14(1):31–47.

Ricci, A., Piunti, M., and Viroli, M. (2010).
Environment programming in multi-agent systems – an artifact-based
perspective.
Autonomous Agents and Multi-Agent Systems.
Published Online with ISSN 1573-7454 (will appear with ISSN 1387-2532).

Russell, S. and Norvig, P. (2003).
Artificial Intelligence, A Modern Approach (2nd ed.).
Prentice Hall.

35

Bibliography III
Stratulat, T., Ferber, J., and Tranier, J. (2009).
MASQ: towards an integral approach to interaction.
In AAMAS (2), pages 813–820.

Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., and Zambonelli, F. (2007).
Infrastructures for the environment of multiagent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):49–60.

Weyns, D. and Holvoet, T. (2004).
A formal model for situated multi-agent systems.
Fundamenta Informaticae, 63(2-3):125–158.

Weyns, D. and Holvoet, T. (2007).
A reference architecture for situated multiagent systems.
In Environments for Multiagent Systems III, volume 4389 of LNCS, pages
1–40. Springer Berlin / Heidelberg.

Weyns, D., Omicini, A., and Odell, J. J. (2007).
Environment as a first-class abstraction in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

36

Bibliography IV

Weyns, D. and Parunak, H. V. D., editors (2007).

Special Issue on Environments for Multi-Agent Systems, volume 14 (1) of
Autonomous Agents and Multi-Agent Systems. Springer Netherlands.

Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and Ferber, J. (2005).

Environments for multiagent systems: State-of-the-art and research challenges.

In Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and Ferber, J.,
editors, Environment for Multi-Agent Systems, volume 3374, pages 1–47.
Springer Berlin / Heidelberg.

Wooldridge, M. (2002).

An Introduction to Multi-Agent Systems.

John Wiley & Sons, Ltd.

37

	Fundamentals
	Existing approaches
	Basic Level
	Advanced Level

