
Multi-Agent Oriented Programming
Programming Agents’ Organisations

JaCaMo meta-model

dynamic relation

composition

act

communicate

participate

Agent

Agent

GoalBelief

Action

Organisation

Group Scheme

Role Goal

Organisation

Norm

regulateco
un

t-a
s

em
po

we
r

perceive

Concept

Dimension

coordinate

Environment

Workspace

Operation

Environment

Artifact

Observable
property

Interaction

*

*

*

*

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

*

*

*

Plan
*

*

Manual

Observable
event

Event
*

*

*

*

*

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Mission *

*

Link

Simplified view on JaCaMo meta-model [Boissier et al., 2011]

A seamless integration of three dimensions based on Jason [Bordini et al., 2007],

Cartago [Ricci et al., 2009], Moise [Hübner et al., 2009] meta-models

2

Organization dimension

composition

Concept

Dimension

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Mission *

*

Link

Simplified Conceptual View (Moise meta-model [Hübner et al., 2009])

Excerpts from organisation program:

Structural spec. Functional spec.

Normative spec.

program in NPL 3

Organisation in JaCaMo: theMoise Framework

I OML (language)
I Tag-based language

(issued fromMoise [Hannoun et al., 2000],
Moise+ [Hübner et al., 2002],MoiseInst [Gâteau et al., 2005])

I OMI (infrastructure)
I developed as an artifact-based working environment

(ORA4MAS [Hübner et al., 2009] based on CArtAgO nodes,
refactoring of S-Moise+ [Hübner et al., 2006] and
Synai [Gâteau et al., 2005])

I Integrations
I Environment and Organisation ([Piunti et al., 2009]), Situated

Artificial Institution [de Brito et al., 2015]
I Agents and Organisation (J -Moise+ [Hübner et al., 2007])

4

Outline

Organization Abstractions
Structural specification
Functional specification
Normative specification

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

5

Moise Modelling Dimensions

E

Environment

P

OF Functional
Specification

Global goals, plans,
Missions, schemas,
preferences

B
Structural
Specification

Groups, links, roles
Compatibilities, multiplicities
inheritance

OS

Normative Specification
Permissions, Obligations
Allows agents autonomy!

6

Moise OML

I OML for defining organisation specification and organisation entity
I Three independent dimensions [Hübner et al., 2007]

(; well adapted for the reorganisation concerns):
I Structural: Roles, Groups
I Functional: Goals, Missions, Schemes
I Normative: Norms (obligations, permissions, interdictions)

I Abstract description of the organisation for
I the designers
I the agents

; J -Moise [Hübner et al., 2007]
I the Organisation Management Infrastructure

; ORA4MAS [Hübner et al., 2009]

7

Moise OML meta-model (partial & simplified view)

Agent Goal

create
delete

adopt
leave

create
delete commit

leave

achieve

Organisation
Dimension

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

primitive operationscomposition
association dependencyconcept mapping

dimension border
Cardinalities are not represented

structural spec. functional spec. normative spec.

8

Moise OML global picture

Agent

Organisation
Specification

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

primitive operationscomposition
association dependencyconcept mapping

dimension border
Cardinalities are not represented

structural spec. functional spec. normative spec.

Group Instance

Role Player

Scheme Instance

Mission Player

Organisation
Entity

9

Outline

Organization Abstractions
Structural specification
Functional specification
Normative specification

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

10

Structural Specification

I Specifies the structure of an MAS along three levels:
I Individual with Role
I Social with Link
I Collective with Group

I Components:
I Role: label used to assign constraints on the behavior of agents

playing it
I Link: relation between roles that directly constrains the agents in

their interaction with the other agents playing the corresponding
roles

I Group: set of links, roles, compatibility relations used to define a
shared context for agents playing roles in it

11

Structural specification
I Defined with the tag structural-specification in the context of an

organisational-specification
I One section for definition of all the roles participating to the

structure of the organisation (role-definitions tag)
I Specification of the group including all subgroup specifications

(group-specification tag)

Example

<organisational-specification
<structural-specification>

<role-definitions> ... </role-definitions>
<group-specification id="xxx">
...

</group-specification>
</structural-specification>
...

</organisational-specification>

12

Role specification

I Role definition(role tag) in role-definitions section, is composed of:
I identifier of the role (id attribute of role tag)
I inherited roles (extends tag) - by default, all roles inherit of the soc

role -

Example

<role-definitions>
<role id="player" />
<role id="coach" />
<role id="middle"> <extends role="player"/> </role>
<role id="leader"> <extends role="player"/> </role>
<role id="r1>
<extends role="r2" />
<extends role="r3" />

</role>
...

</role-definitions>

13

Group specification
I Group definition (group-specification tag) is composed of:

I group identifier (id attribute of group-specification tag)
I roles participating to this group and their cardinality (roles tag and

id, min, max), i.e. min. and max. number of agents that should
adopt the role in the group (default is 0 and unlimited)

I links between roles of the group (link tag)
I subgroups and their cardinality (subgroups tag)
I formation constraints on the components of the group

(formation-constraints)

Example

<group-specification id="team">
<roles>

<role id="coach" min="1" max="2"/> ...
</roles>
<links> ... </links>
<subgroups> ... </subgroups>
<formation-constraints> ... </formation-constraints>

</group-specification>

14

extends-subgroups, scope

extends-subgroups

I Used for links or formation constraints
I if extends-subgroups== true, the link/constraint is also valid in all

subgroups
I else it is valid only in the group where it is defined
I Default is false

scope

I Used for links or formation constraints
I if scope==inter-group: link or constraint exists for source or target

belonging to different instances of the group
I if scope==intra-group: link or constraint exists for source or target

belonging to the same instance of the group

15

Link specification

I Link definition (link tag) included in the group definition is
composed of:
I role identifiers (from, to)
I type (type) with one of the following values: authority,

communication, acquaintance
I a scope (scope)
I and validity to subgroups (extends-subgroups)

Example

<link from="coach"
to="player"
type="authority"
scope="inter-group"
extends-subgroups="true" />

16

Formation constraint specification

I Formation constraints definition (formation-constraints tag) in a
group definition is composed of:
I compatiblity constraints (compatibility tag) between roles (from,

to), with a scope, extends-subgroups and directions (bi-dir)

Example

<formation-constraints>
<compatibility from="middle"

to="leader"
scope="intra-group"
extends-subgroups="false"
bi-dir="true"/>

...
</formation-constraints>

17

Structural specification example (1)

Graphical representation of structural specification of Joj Team

18

Structural specification example (2)

Graphical representation of structural specification of 3-5-2 Joj Team

19

Outline

Organization Abstractions
Structural specification
Functional specification
Normative specification

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

20

Functional Specification

I Specifies the expected behaviour of an MAS in terms of goals
along two levels:
I Collective with Scheme
I Individual with Mission

I Components:
I Goals:

I Performance goal (default type). Goals of this type should be
declared as done by the agents committed to them, when realized

I Achievement goal. Goals of this type should be declared as satisfied
by the agents committed to them, when realized

I Maintenance goal. Goals of this type are not realized at a precise
moment but are pursued while the scheme is running.
The agents committed to them do not need to declare that they are
satisfied

I Scheme: global goal decomposition tree assigned to a group
I Any scheme has a root goal that is decomposed into subgoals

I Missions: set of coherent goals assigned to roles within norms

21

Functional specification

I Defined with the tag functional-specification in the context of an
organisational-specification

I Specification in sequence of the different schemes participating to
the expected behaviour of the organisation

Example

<functional-specification>
<scheme id="sideAttack" >

<goal id="dogoal" > ... </goal>
<mission id="m1" min="1" max="5">

...
</mission>
...

</scheme>
...

</functional-specification>

22

Scheme specification

I Scheme definition (scheme tag) is composed of:
I identifier of the scheme (id attribute of scheme tag)
I the root goal of the scheme with the plan aiming at achieving it

(goal tag)
I the set of missions structuring the scheme (mission tag)

I Goal definition within a scheme (goal tag) is composed of:
I an idenfier (id attribute of goal tag)
I a type (performance default, achievement or maintenance)
I min. number of agents that must satisfy it (min) (default is “all”)
I optionally, an argument (argument tag) that must be assigned to a

value when the scheme is created
I optionally a plan

I Plan definition attached to a goal (plan tag) is composed of
I one and only one operator (operator attribute of plan tag) with

sequence, choice, parallel as possible values
I set of goal definitions (goal tag) concerned by the operator

23

Scheme specification example

<scheme id="sideAttack">
<goal id="scoreGoal" min="1" >
<plan operator="sequence">
<goal id="g1" min="1" ds="get the ball" />
<goal id="g2" min="3" ds="to be well placed">
<plan operator="parallel">
<goal id="g7" min="1" ds="go toward the opponent’s field" />
<goal id="g8" min="1" ds="be placed in the middle field" />
<goal id="g9" min="1" ds="be placed in the opponent’s goal area" />

</plan>
</goal>
<goal id="g3" min="1" ds="kick the ball to the m2Ag" >

<argument id="M2Ag" />
</goal>
<goal id="g4" min="1" ds="go to the opponent’s back line" />
<goal id="g5" min="1" ds="kick the ball to the goal area" />
<goal id="g6" min="1" ds="shot at the opponent’s goal" />

</plan>
</goal>
...

24

Mission specification
I Mission definition (mission tag) in the context of a scheme

definition, is composed of:
I identifier of the mission (id attribute of mission tag)
I cardinality of the mission min (0 is default), max (unlimited is

default) specifying the number of agents that can be committed to
the mission

I the set of goal identifiers (goal tag) that belong to the mission

Example

<scheme id="sideAttack">
... the goals ...
<mission id="m1" min="1" max="1">

<goal id="scoreGoal" /> <goal id="g1" />
<goal id="g3" /> ...

</mission>
...

</scheme>

25

Functional specification example (1)

Graphical representation of social scheme for joj team

26

Functional specification example (2)

score a goal

m1

go towards the opponent field

m1, m2, m3

get the ball

be placed in the middle field

be placed in the opponent goal area
kick the ball to (agent committed to m2)

go to the opponent back line

kick the ball to the goal area

shot at the opponent’s goal

m1

m1

m2 m2

m2

m3

m3

Key

goal
missions

success rate parallelismchoicesequence

Scheme

Organizational Entity

Lucio

Cafu

Rivaldo

m1

m2

m3

Graphical representation of social scheme “side_attack” for joj team

27

Outline

Organization Abstractions
Structural specification
Functional specification
Normative specification

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

28

Normative Specification

I Explicit relation between the functional and structural specifications
I Permissions and obligations to commit to missions in the context

of a role
I The normative specification makes explicit the normative dimension

of a role

29

Normative specification
I Defined in-between the tag normative-specification in the context

of an organisational-specification
I Definition in sequence of the different norms participating to the

governance of the organisation
I Definition of programs written in Normative Programming

Language (NPL)

Example

<normative-specification>
<norm id="n1" ... />
...
<norm id="..." ... />
<npl-norms>
...
</npl-norms>

</normative-specification>

30

Norm Definition

I Norm definition with norm tag, in the context of a
normative-specification definition, with attributes:
I the identifier of the norm (id)
I the type of the norm (type) with obligation, permission as possible

values
I a condition of activation (condition) – optional – checking:

I properties of the organisation (e.g. #role_compatibility,
#mission_cardinality, #role_cardinality, #goal_non_compliance)

; unregimentation of organisation properties !!!
I (un)fulfillment of an obligation stated in a particular norm

(unfulfilled, fulfilled)
I the role identifier (role) on which the norm is applied
I the mission identifier (mission) object of the norm
I a time constraint (time-constraint) – optional –

31

Norm Definition – example
I Any agent playing back is obliged to commit to mission m1 and

achieve its goals within 1 minute

<norm id = "n1" type="obligation"
role="back" mission="m1" time-constraint="1 minute"/>

I Any agent playing left is obliged to commit to mission m2 and
achieve its goals within 1 day

<norm id = "n2" type="obligation"
role="left" mission="m2" time-constraint="1 day"/>

I Any agent playing coach is obliged to commit to mission ms and
achieve its goals within 3 hour in case obligation of norm n2 has
not been fulfilled

<norm id = "n4" type="obligation"
condition="unfulfilled(obligation(_,n2,_,_))"
role="coach" mission="ms" time-constraint="3 hour"/>

32

Normative Programming Language (NPL)
Norms written in NPL have:
I an activation condition
I a consequence

Two kinds of consequences are considered
I regimentations (fail)
I obligations (obligation)

I terms starting with an upper case letter are variables

Example (Norm)

norm n1: plays(A,writer,G) -> fail.

or

norm n1: plays(A,writer,G)
-> obligation(A,n1,plays(A,editor,G),

‘now + 3 min‘).

33

Normative Programming Language (NPL)

Example (NPL Program)

<npl-norms>
a :- t & k.
norm npl1: a & v(X) ->

obligation(bob,true,g(X),‘now‘+‘1 day‘).
norm npl2: a & b -> fail(test).

</npl-norms>

34

Outline

Organization Abstractions

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

35

Organisation entity dynamics

1. Organisation is created (by the agents)
I instances of groups
I instances of schemes

2. Agents enter into groups adopting roles
3. When a group is well formed, it may become responsible for

schemes
I Agents from the group are then obliged to commit to missions in

the scheme

4. Agents commit to missions

5. Agents fulfil mission’s goals

6. Agents leave schemes and groups

7. Schemes and groups instances are destroyed

36

Goal dynamics

waiting

satisfiedimpossible

enabled

waiting initial state
enabled goal pre-conditions are satisfied &

scheme is well-formed
satisfied agents committed to the goal have achieved it

impossible the goal is impossible to be satisfied

Note: goal state from the Organization point of view may be different
of the goal state from the Agent point of view

37

Norm dynamics

d > nowactive

fulfilled

unfulfilled

inactive

g

¬ ø

ø

norm n : φ −> obligation(a, r ,g,d)

I φ: activation condition of the norm (e.g. play a role)
I g: the goal of the obligation (e.g. commit to a mission)
I d : the deadline of the obligation

38

Outline

Organization Abstractions

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

39

Integrating A & O dimensions

dynamic relation

composition

participate

Agent

Agent

GoalBelief

Action

Organisation

Group Scheme

Role Goal

Organisation

Norm

regulate

Concept

Dimension

coordinate

Interaction

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Event
*

*

*

*

*

Mission *

*

Link

40

Integrating A & O dimensions

Agent integration mechanisms allow agents to be aware of and to
deliberate on:
I entering/exiting the organisation
I modification of the organisation
I obedience/violation of norms
I sanctioning/rewarding other agents

e.g. J -Moise+ [Hübner et al., 2007], Autonomy based
reasoning [Carabelea, 2007], ProsA2 Agent-based reasoning on
norms [Ossowski, 1999], ...

41

Organization actions and beliefs

I Observable Properties:
I group(group_id,group_type,artid): list of the group_id of

group_type that exist in the organizational entity
I scheme(scheme_id,scheme_type,artid): list of the scheme_id of

scheme_type that exist in the organizational entity
I Operations:

I createGroup(group) (resp. removeGroup(grid)): attempts to create
(resp. remove) group in the organization

I createScheme(scheme) (resp. removeScheme(schid)): attempts to
create (resp. remove) scheme in the organization

Note: available through OrgBoard Artifact created when creating an
organization

42

Group actions and beliefs

I Observable Properties:
I specification: group spec. in the OS
I player: list of play(agent, role, group)
I schemes: list of scheme identifiers that the group is responsible for
I subgroups, parentGroup, formationStatus (if the group is well

formed or not)
I Operations:

I adoptRole(role) (resp. leaveRole(role)): attempts to adopt (resp.
leave) role in the group

I addScheme(schid) (resp. removeScheme(schid)): attempts to set
(resp. unset) the group responsible for the scheme managed by the
SchemeBoard schId

I setParentGroup(groupid), setOwner(agtid), destroy

Note: available through GroupBoard Artifact created when creating a
group in an organization

43

Scheme actions and beliefs

I Observable Properties:
I specification: scheme spec. in the OS
I commitments: list of commitment(agent, mission, scheme)
I groups: list of groups resp. for the scheme
I goalState: list of goals’ current state
I goalArgument(schemeId,goalId,argId,value): added only if the

argument has a value, usually defined by the operation
setArgumentValue

I obligations: list of active obligations in the scheme
(obligation(agt,norm,goal,deadline))

I permissions: list of active permissions in the scheme
(permission(agt,norm,goal,deadline))

I goalArgument: value of goals’ arguments, defined by the operation
setArgumentValue

I Operations:
I commitMission(mission) (resp. leaveMission): attempts to

“commit” (resp “leave”) a mission in the scheme
I goalAchieved(goal): declares that goal is achieved
I setArgumentValue(goal, argument, value): defines the value of

goal’s argument
I resetGoal(goal) (reset the status of a goal), destroy

Note: available in SchemeBoard Artifact created when creating a
scheme in an organization

44

Norm actions and beliefs

I Observable Properties:
I obligation: current active obligations

I Operations:
I load(nplprogram)
I addFact (resp. removeFact)

Note: available in Normative board managing obligations/permissions
defined in the normative specification
I automatically created when a group becomes responsible for a

scheme
I or when loading any NPL program

45

Organisational actions in Jason I
Example (GroupBoard)

...
joinWorkspace("ora4mas",O4MWsp);
makeArtifact(

"auction",
"ora4mas.nopl.GroupBoard",
["auction-os.xml", auctionGroup, false, true],
GrArtId);

adoptRole(auctioneer);
focus(GrArtId);
...

46

Organisational actions in Jason II
Example (SchemeBoard)

...
makeArtifact(

"sch1",
"ora4mas.nopl.SchemeBoard",
["auction-os.xml", doAuction, false, true],
SchArtId);

focus(SchArtId);
addScheme(Sch);
commitMission(mAuctioneer)[artifact_id(SchArtId)];
...

47

Organisational actions in Jason III

I For roles:
I adoptRole
I leaveRole

I For missions:
I commitMission
I leaveMission

I Those actions usually are executed under regimentation (to avoid
an inconsistent organisational state)
e.g. the adoption of role is constrained by
I the cardinality of the role in the group
I the compatibilities of the roles played by the agent

48

Organisational perception – example

49

Handling organisational events in Jason
Whenever something changes in the organisation, the agent
architecture updates the agent belief base accordingly producing events
(belief update from perception)

Example (new agent entered the group)

+play(Ag,boss,GId) <- .send(Ag,tell,hello).

Example (change in goal state)

+goalState(Scheme,wsecs,_,_,satisfied)
: .my_name(Me) & commitment(Me,mCol,Scheme)

<- leave_mission(mColaborator,Scheme).

Example (signals)

+normFailure(N) <- .print("norm failure event: ", N).
50

Typical plans for obligations

Example

+obligation(Ag,Norm,committed(Ag,Mission,Scheme),DeadLine)
: .my_name(Ag)

<- .print("I am obliged to commit to ",Mission);
commit_mission(Mission,Scheme).

+obligation(Ag,Norm,achieved(Sch,Goal,Ag),DeadLine)
: .my_name(Ag)

<- .print("I am obliged to achieve goal ",Goal);
!Goal[scheme(Sch)];
goal_achieved(Goal,Sch).

+obligation(Ag,Norm,What,DeadLine)
: .my_name(Ag)
<- .print("I am obliged to ",What,

", but I don’t know what to do!").

51

Outline

Organization Abstractions

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

52

Integrating O & E dimensions

dynamic relation

composition

Organisation

Group Scheme

Role Goal

Organisation

Norm

co
un

t-a
s

em
po

we
r

Concept

Dimension

Environment

Workspace

Operation

Environment

Artifact

Observable
property

Interaction

*

*

*

*

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Environment

Workspace

Operation

Environment

Artifact

Observable
property*

*

*

*

Manual

Observable
event

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Mission *

*

Link

Transforming organisations
into embodied organisations
[de Brito et al., 2012], [?],
[Okuyama et al., 2008] so
that:
I organisation may act on

the environment (e.g.
enact rules,
regimentation)

I environment may act on
the organisation (e.g.
count-as rules) based on
Situated Artificial Institu-
tion [de Brito et al., 2015]

53

Environment integration

I Organisational Artifacts enable organisation and environment
integration

I Embodied organisation [Piunti et al., 2009]

Env. Artifact Org. Artifact
count-as

enact

count-as

status: ongoing work

54

Constitutive rules

Count-As rule
An event occurring on an artifact, in a particular context, may
“count-as” an institutional event
I transforms the events created in the working environment into

activation of an organisational operation

; indirect automatic updating of the organisation

Enact rule
An event produced on an organisational artifact, in a specific
institutional context, may “enact” change and updating of the working
environment (i.e., to promote equilibrium, avoid undesiderable states)
I Installing automated control on the working environment
I Even without the intervention of organisational/staff agents

(regimenting actions on physical artifacts, enforcing sanctions, ...)

55

Outline

Organization Abstractions

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo
Organisational Artifacts
Normative Programming Language

Example

Conclusions and wrap-up

56

Organisation management infrastructure (OMI)
Responsibility

I Managing – coordination, regulation – the agents’ execution within
organisation defined by an organisational specification

Organisation
Program

OMI

AgentAgentAgentAgent

(e.g. MadKit, AMELI, S-Moise+, ...)

57

ORA4MAS: OMI within JaCaMo
Based on A&A andMoise.
Agents’ working environment is instrumented with Organizational
Artifacts (OA) offering ”organizational” actions
; Distributed management of the organization with a clear separation
of concerns:
I Agents:

I create, handle OAs and act on them
; deploy and manage their OMI

I perceive the organization state and
violations of norms from the OAs

I decide about:
I actions on the organization, on

norms
I sanctions to apply

I OAs are in charge of interpreting
Normative Programs
I to detect and evaluate norms

compliance
I or to regiment norms

Workspace ora4mas

Org.
Spec.
NOPL

agent

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Workspace
Artifact

\\\

agent

agent

58

Outline

Organization Abstractions

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo
Organisational Artifacts
Normative Programming Language

Example

Conclusions and wrap-up

59

ORA4MAS– OrgBoard artifact

Manages all artifacts of an organisation.

I Observable Properties:
I group(group_id,group_type,artid): list of

the group_id of group_type that exist in
the organizational entity

I scheme(scheme_id,scheme_type,artid): list
of the scheme_id of scheme_type that
exist in the organizational entity

I Operations:
I createGroup(group) (resp.

removeGroup(grid)): attempts to create
(resp. remove) group in the organization

I createScheme(scheme) (resp.
removeScheme(schid)): attempts to create
(resp. remove) scheme in the organization

60

ORA4MAS– GroupBoard artifact
Manages the functioning of an instance of group in the organization.

I Observable Properties:
I specification: group spec. in the OS
I player: list of play(agent, role, group)
I schemes: list of scheme identifiers that the

group is responsible for
I subgroups, parentGroup, formationStatus (if

the group is well formed or not)
I Operations:

I adoptRole(role) (resp. leaveRole(role)):
attempts to adopt (resp. leave) role in the
group

I addScheme(schid) (resp.
removeScheme(schid)): attempts to set
(resp. unset) the group responsible for the
scheme managed by the SchemeBoard schId

I setParentGroup(groupid), setOwner(agtid),
destroy

GroupBoard

specification

players

schemes

subgroups

\\\

adoptRole
leaveRole
removeScheme

parentGroup

formationStatus

setParentGroup
setOwner
destroy

addScheme

61

ORA4MAS– SchemeBoard artifact
Manages the functioning of an instance of social scheme in the
organization.

I Observable Properties:
I specification: scheme spec. in the OS
I commitments: list of commitment(agent,

mission, scheme)
I groups: list of groups resp. for the scheme
I goalState: list of goals’ current state
I goalArgument(schemeId,goalId,argId,value):

added only if the argument has a value,
usually defined by the operation
setArgumentValue

I obligations: list of active obligations in the
scheme (obligation(agt,norm,goal,deadline))

I permissions: list of active permissions in the
scheme
(permission(agt,norm,goal,deadline))

I goalArgument: value of goals’ arguments,
defined by the operation setArgumentValue

SchemeBoard

specification

commitments

groups

goalState

\\\

commitMission
leaveMission
goalAchieved

obligations

setArgumentValue
resetGoal
destroy

62

ORA4MAS– SchemeBoard artifact (Contd)

Manages the functioning of an instance of social scheme in the
organization.

I Operations:
I commitMission(mission) (resp.

leaveMission): attempts to “commit” (resp
“leave”) a mission in the scheme

I goalAchieved(goal): declares that goal is
achieved

I setArgumentValue(goal, argument, value):
defines the value of goal’s argument

I resetGoal(goal) (reset the status of a goal),
destroy

SchemeBoard

specification

commitments

groups

goalState

\\\

commitMission
leaveMission
goalAchieved

obligations

setArgumentValue
resetGoal
destroy

63

admCommand in Scheme/Group Boards

// in some plan of some agent
admCommand(setCardinality(role,editor,0,10));
admCommand(setCardinality(role,writer,0,20));

lookupArtifact("s1", SId); // get artifact id of scheme "s1"
admCommand(setCardinality(mission,mColaborator,0,3))[aid(SId)];
admCommand(setCardinality(mission,mManager,0,2))[aid(SId)];

Only the owner of the group/scheme can perform admCommands

64

ORA4MAS– NormativeBoard artifact

I It can be loaded with any NPL program
I is used to manage obligations/permissions defined in the normative

specification
I When a group becomes responsible for a scheme, an instance of

this artifact is created automatically.

I Observable Properties:
I obligation: current active obligations

I Operations:
I load(nplprogram)
I addFact (resp. removeFact)

65

Organisational Artifact Architecture
Org. Artifacts managing groups and social schemes execution:
I interpret programs written in Normative Programming Language

(NPL) [?] coming from the automatic translation ofMoise
programs

I generate signals
I oblCreated(o), oblFulfilled(o), oblUnfulfilled(o)
I oblInactive(o), normFailure(f)

(o = obligation(to whom, reason, what, deadline))

Organizational Artifact

State

 Moise
Spec.

Obligations
State

NOPL Program

NPL Engine

translated

NPL Interpreter\\\

operation
operation
operation

link operation
link operation
link operation

66

Generic control cycle of an Organisational Artifact

// oe: current state of the org. managed by the artifact
// p: current NOPL program
// npi: NPL interpreter
When operation o is triggered by agent a do
oe’ <- oe \\ creates a ‘‘backup’’ of current oe
oe <- executes(o,oe)
f <- a list of predicates representing oe
r <- npi(p,f) \\ runs the interpreter for the new state
If r == fail then
oe <- oe’ \\ restore the state backup
fail operation o

else
update observable properties from obligations state
success operation o

67

Outline

Organization Abstractions

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo
Organisational Artifacts
Normative Programming Language

Example

Conclusions and wrap-up

68

Structural Operational Semantics

A normative system configuration is a tuple: 〈F ,N,ns,OS ,t〉
with
I F is a set of facts
I N is a set of norms
I ns is the state of the normative system (sound state > or a failure

state ⊥)
I OS is a set of obligations

each element os ∈OS is 〈o,ost〉
where o obligation and ost its state

I t is the current time

The initial configuration of a NP P is 〈PF ,PN ,>,∅,0〉
I PF and PN are the initial facts and norms defined in the normative

program P

69

Rules for Norm Management

I Failure detection:

n ∈ N F |= nϕ nψ = fail(_)

〈F ,N,>,OS ,t〉 −→ 〈F ,N,⊥,OS ,t〉
(Regim)

when any norm n becomes active (i.e., its condition component holds in the
current state) and its consequence is fail(_), the normative state is no
longer sound but in failure (⊥).

I Roll back from failure:

∀n ∈ N.(F |= nϕ =⇒ nψ 6= fail(_))

〈F ,N,⊥,OS,t〉 −→ 〈F ,N,>,OS,t〉
(Consist)

70

Rules for Norm Management (continued)

I Creation of obligation:

n ∈ N F |= nϕ nψ = o oθd > t

¬∃〈o ′,ost〉 ∈OS . (o ′ obl
= oθ∧ost 6= inactive)

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,OS ∪〈oθ,active〉,t〉

where θ is the m.g.u. such that F |= oθ

(Oblig)

71

Rules for Obligation Management

os ∈OS os = 〈o,active〉
F |= og od ≥ t

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,(OS \{os})∪{〈o, fulfilled〉},t〉

(Fulfil)

os ∈OS os = 〈o,active〉 od < t

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,(OS \{os})∪{〈o,unfulfilled〉},t〉

(Unfulfil)

os ∈OS os = 〈o,active〉 F 6|= or
〈F ,N,>,OS ,t〉 −→

〈F ,N,>,(OS \{os})∪{〈o, inactive〉},t〉

(Inactive)

72

NOPL
Normative Organisation Programming Language

I NOPL is a particular class of NPL: facts, rules and norms are
specific to a OML (eg. Moise NOML):

id condition role type mission TTF

n2 writer obl mCol 1 day
n3 writer obl mBib 1 day
n4 unfulfilled(n2) editor obl ms 3 hours
n5 fulfilled(n3) editor obl mr 3 hours
n6 #gnc editor obl ms 3 hours
n7 #rc editor obl ms 30 minutes
n6 #mc editor obl ms 1 hour
...

#gnc = goal_non_compliance
#rc = role_compatibility
#mc = mission_cardinality

73

OS inMoise OML to NOPL translation

Example (role cardinality norm – regimentation)

group_role(writer,1,5).

norm ncar: group_role(R,_,M) &
rplayers(R,G,V) & V > M

-> fail(role_cardinality(R,G,V,M)).

Example (role cardinality norm – agent decision)

norm ncar: group_role(R,_,M) &
rplayers(R,G,V) & V > M &
plays(E,editor,G)

-> obligation(E,ncar,committed(E,ms,_),
‘now + 1 hour‘).

74

Moise Social scheme — NOPL — Facts

I Static facts:
I scheme_mission(m,max ,min): cardinality of mission m;
I goal(m,g,pre-cond ,‘ttf ‘): mission, preconditions and TTF for goal

g.
I Dynamic facts (provided at run-time by the organisational artifact

in charge of the management of the social scheme instance):
I plays(a,ρ,gr): agent a plays the role ρ in the group instance

identified by gr .
I responsible(gr ,s): the group instance gr is responsible for the

missions of the scheme instance s.
I committed(a,m,s): the agent a is committed to mission m in

scheme s.
I achieved(s,g,a): the goal g has been achieved in the scheme s by

the agent a.

75

Moise Social scheme — NOPL — Rules

I Example of rules used to infer the state of the scheme:
I Number of players of mission M in scheme S:

mplayers(M,S,V) :-
.count(committed(_,M,S),V).

I Wellformedness property of scheme S:
well_formed(S) :-

mplayers(mBib,S,V1) & V1 >= 1 & V1 <= 1 &
mplayers(mCol,S,V2) & V2 >= 1 & V2 <= 5 &
mplayers(mMan,S,V3) & V3 >= 1 & V3 <= 1.

I Readyness of goal G in scheme S (i.e. goal is ready to be achieved):
ready(S,G) :-

goal(_, G, PCG, _) & all_achieved(S,PCG).
all_achieved(_,[]).
all_achieved(S,[G|T]) :-

achieved(S,G,_) & all_achieved(S,T).

76

Moise Social scheme — NOPL — Norms
Norms for goals

I Agents are obliged to achieve their ready goals
norm ngoa:
committed(A,M,S) & goal(M,G,_,D) &
well_formed(S) & ready(S,G)
-> obligation(A,ngoa,achieved(S,G,A),‘now‘ + D).

Norms for properties

I Mission cardinality as regimentation
norm mission_cardinality:
scheme_mission(M,_,MMax) & mplayers(M,S,MP) & MP > MMax
-> fail(mission_cardinality).

I Mission cardinality as obligation
norm mission_cardinality:
scheme_mission(M,_,MMax) & mplayers(M,S,MP) & MP > MMax
responsible(Gr,S) & plays(A,editor,Gr)
-> obligation(A,mission_cardinality,

committed(A,ms,_), ‘now‘+‘1 hour‘).

77

Moise — NOPL — Norms

; Definition of similar kinds of facts, rules and norms for the groups,
roles in the structural specification

I Domain norms:
I Each norm in the normative specification of the OS has a

corresponding norm in the NOP
I Since in the OS, obligations refer to roles and missions, norms in

corresponding NOP identify the agents playing the role in groups
responsible for the scheme and take into account the property
conditions.

norm n2:
plays(A,writer,Gr) & responsible(Gr,S) &
mplayers(mCol,S,V) & V < 5

-> obligation(A,n2,committed(A,mCol,S),‘now‘+‘1 day‘).

78

Partial Synthesis

I NPL, based on obligation and regimentation, formalised using
operational semantics, specialised into NOPL

I Automatic translation of OS written inMoise OML into several
NOPs

I Implementation in ORA4MAS, artifact-based OMI: Organisational
Artifacts act as interpreters of NOPs.
I NOPL (80%): dynamic of obligations (several aspects of the
Moise OS have been translated to norms)

I CArtAgO (10%): interface for agents
I Java (10%): dynamic of organisational state

79

Outline

Organization Abstractions

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

80

Writing paper example
Organisation Specification

<organisational-specification
<structural-specification>

<role-definitions>
<role id="author" />
<role id="writer"> <extends role="author"/> </role>
<role id="editor"> <extends role="author"/> </role>

</role-definitions>

<group-specification id="wpgroup">
<roles>

<role id="writer" min="1" max="5" />
<role id="editor" min="1" max="1" />

</roles>
...

81

Writing paper sample I
Execution

jaime action: jmoise.create_group(wpgroup)

all perception: group(wpgroup,g1)[owner(jaime)]

jaime action: jmoise.adopt_role(editor,g1)

olivier action: jmoise.adopt_role(writer,g1)

jomi action: jmoise.adopt_role(writer,g1)

all perception:
play(jaime,editor,g1)
play(olivier,writer,g1)
play(jomi,writer,g1)

82

Writing paper sample II
Execution

jaime action: jmoise.create_scheme(writePaperSch, [g1])

all perception: scheme(writePaperSch,s1)[owner(jaime)]

all perception: scheme_group(s1,g1)

jaime perception:
permission(s1,mManager)[role(editor),group(wpgroup)]

jaime action: jmoise.commit_mission(mManager,s1)

olivier perception:
obligation(s1,mColaborator)[role(writer),group(wpgroup),
obligation(s1,mBib)[role(writer),group(wpgroup)

olivier action: jmoise.commit_mission(mColaborator,s1)

olivier action: jmoise.commit_mission(mBib,s1)

jomi perception:
obligation(s1,mColaborator)[role(writer),group(wpgroup),
obligation(s1,mBib)[role(writer),group(wpgroup)]

jomi action: jmoise.commit_mission(mColaborator,s1)

83

Writing paper sample III
Execution

all perception:
commitment(jaime,mManager,s1)
commitment(olivier,mColaborator,s1)
commitment(olivier,mBib,s1)
commitment(jomi,mColaborator,s1)

84

Writing paper sample IV
Execution

all perception: goal_state(s1,*,unsatisfied)

jaime (only wtitle is possible, Jaime should work)
event: +!wtitle
action: jmoise.set_goal_state(s1,wtitle,satisfied)

85

Writing paper sample V
Execution

jaime event: +!wabs
action: jmoise.set_goal_state(s1,wabs,satisfied)

86

Writing paper sample VI
Execution

jaime event: +!wsectitles
action: jmoise.set_goal_state(s1,wsectitles,satisfied)

87

Writing paper sample VII
Execution

olivier, jomi event: +!wsecs
action: jmoise.set_goal_state(s1,wsecs,satisfied)

88

Writing paper sample VIII
Execution

jaime event: +!wcon; ...

olivier event: +!wref; ...

89

Writing paper sample IX
Execution

all action: jmoise.remove_mission(s1)

jaime action: jmoise.jmoise.remove_scheme(s1)

90

Useful tools — Mind inspector

91

Outline

Organization Abstractions

Organization Dynamics

Integrating A & O dimensions

Integrating O & E dimensions

Organisation Management Infrastructure in JaCaMo

Example

Conclusions and wrap-up

92

Wrap-up
I Model to specify global orchestration

; team strategy defined at a high level
I Ensures that the agents follow some of the constraints specified for

the organisation
I Helps the agents to work together
I The organisation is interpreted at runtime, it is not hardwired in

the agents code
I The agents ‘handle’ the organisation (i.e. their artifacts)
I It is suitable for open systems as no specific agent architecture is

required
I Organization can easily be changed by the developers or by the

agents themselves

I All available as open source at

http://moise.souceforge.net

93

http://moise.souceforge.net

Bibliography I
Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A. (2011).
Multi-agent oriented programming with jacamo.
Science of Computer Programming, pages –.

Bordini, R. H., Hübner, J. F., and Wooldrige, M. (2007).
Programming Multi-Agent Systems in AgentSpeak using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

Carabelea, C. (2007).
Reasoning about autonomy in open multi-agent systems - an approach based
on the social power theory.
in french, ENS Mines Saint-Etienne.

de Brito, M., Hübner, J. F., and Boissier, O. (2015).
Bringing constitutive dynamics to situated artificial institutions.
In Proc. of 17th Portuguese Conference on Artificial Intelligence (EPIA 2015),
volume 9273 of LNCS, pages 624–637. Springer.

de Brito, M., Hübner, J. F., and Bordini, R. H. (2012).
Programming institutional facts in multi-agent systems.
In COIN-12, Proceedings.

94

Bibliography II

Gâteau, B., Boissier, O., Khadraoui, D., and Dubois, E. (2005).
Moiseinst: An organizational model for specifying rights and duties of
autonomous agents.
In Third European Workshop on Multi-Agent Systems (EUMAS 2005), pages
484–485, Brussels Belgium.

Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat, C. (2000).
Moise: An organizational model for multi-agent systems.
In Monard, M. C. and Sichman, J. S., editors, Proceedings of the International
Joint Conference, 7th Ibero-American Conference on AI, 15th Brazilian
Symposium on AI (IBERAMIA/SBIA’2000), Atibaia, SP, Brazil, November
2000, LNAI 1952, pages 152–161, Berlin. Springer.

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009).
Instrumenting Multi-Agent Organisations with Organisational Artifacts and
Agents.
Journal of Autonomous Agents and Multi-Agent Systems.

95

Bibliography III

Hübner, J. F., Sichman, J. S., and Boissier, O. (2002).
A model for the structural, functional, and deontic specification of
organizations in multiagent systems.
In Bittencourt, G. and Ramalho, G. L., editors, Proceedings of the 16th
Brazilian Symposium on Artificial Intelligence (SBIA’02), volume 2507 of LNAI,
pages 118–128, Berlin. Springer.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2006).
S-MOISE+: A middleware for developing organised multi-agent systems.
In Boissier, O., Dignum, V., Matson, E., and Sichman, J. S., editors,
Coordination, Organizations, Institutions, and Norms in Multi-Agent Systems,
volume 3913 of LNCS, pages 64–78. Springer.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2007).
Developing Organised Multi-Agent Systems Using the MOISE+ Model:
Programming Issues at the System and Agent Levels.
Agent-Oriented Software Engineering, 1(3/4):370–395.

96

Bibliography IV

Okuyama, F. Y., Bordini, R. H., and da Rocha Costa, A. C. (2008).
A distributed normative infrastructure for situated multi-agent organisations.
In Baldoni, M., Son, T. C., van Riemsdijk, M. B., and Winikoff, M., editors,
DALT, volume 5397 of Lecture Notes in Computer Science, pages 29–46.
Springer.

Ossowski, S. (1999).
Co-ordination in Artificial Agent Societies: Social Structures and Its
Implications for Autonomous Problem-Solving Agents, volume 1535 of LNAI.
Springer.

Piunti, M., Ricci, A., Boissier, O., and Hubner, J. (2009).
Embodying organisations in multi-agent work environments.
In IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT 2009), Milan, Italy.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009).
Environment programming in CArtAgO.
In Multi-Agent Programming: Languages,Platforms and Applications,Vol.2.
Springer.

97

	Organization Abstractions
	Structural specification
	Functional specification
	Normative specification

	Organization Dynamics
	Integrating A & O dimensions
	Integrating O & E dimensions
	Organisation Management Infrastructure in JaCaMo
	Organisational Artifacts
	Normative Programming Language

	Example
	Conclusions and wrap-up

