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Simplified view on JaCaMo meta-model [Boissier et al., 2020, Boissier et al., 2011]

A seamless integration of three dimensions based on Jason [Bordini et al., 2007],

Cartago [Ricci et al., 2009], Moise [Hübner et al., 2009] meta-models
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Simplified Conceptual View (Jason meta-model [Bordini et al., 2007]):

Simple Agent Program:

example bob.asl example carl.asl
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Agent in JaCaMo: Jason

The foundational language for Jason is AgentSpeak
I Originally proposed by Rao [Rao, 1996]
I Programming language for BDI agents
I Elegant notation, based on logic programming
I Inspired by PRS [Georgeff and Lansky, 1987], dMARS

[d’Inverno et al., 1997], and BDI Logics [Rao et al., 1995]
I Abstract programming language aimed at theoretical results
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Jason
A practical implementation of a variant of AgentSpeak

I Jason implements the operational semantics of a variant of
AgentSpeak

I Has various extensions aimed at a more practical programming
language (e.g. definition of the MAS, communication, ...)

I Highly customised to simplify extension and experimentation
I Developed by Jomi F. Hübner, Rafael H. Bordini, and others
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Main Language Constructs

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how
Actions can be internal, external, communicative or
organisational ones

Events: happen as consequence to changes in the agent’s beliefs
or goals

Intentions: plans instantiated to achieve some goal

Note: identifiers starting in upper case denote variables
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Main Language Constructs and Runtime Structures

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how
Actions can be internal, external, communicative or
organisational ones

Runtime structures:

Events: happen as consequence to changes in the agent’s beliefs
or goals

Intentions: plans instantiated to achieve some goal

Note: identifiers starting in upper case denote variables
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(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X).// I

beliefs: prolog like (First Order Logic)
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(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X).// I

beliefs: prolog like (First Order Logic)
desires: prolog like, with ! prefix
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(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X).// I

beliefs: prolog like (First Order Logic)
desires: prolog like, with ! prefix
plans:
I define when a desire becomes an intention ; deliberate
I how it is satisfied
I are used for practical reasoning ; means-end
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(BDI & Jason) Hello World – agent bob
desires from perception – options

+happy(bob) <- !say(hello).

+!say(X) : not today(monday) <- .print(X).
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(BDI & Jason) Hello World – agent bob
source of beliefs

+happy(bob)[source(A)]
: someone_who_knows_me_very_well(A)
<- !say(hello).

+!say(X) : not today(monday) <- .print(X).

10



(BDI & Jason) Hello World – agent bob
plan selection

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X).
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(BDI & Jason) Hello World – agent bob
intention revision

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X); !say(X).

-happy(H)
: .my_name(H)
<- .drop_intention(say(hello)).
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(BDI & Jason) Hello World – agent bob
intention revision

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X); !say(X).

-happy(H)
: .my_name(H)
<- .drop_intention(say(hello)).
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(BDI & Jason) Hello World – agent bob
intention revision / Features

I we can have several intentions based on the same plans

; running concurrently
I long term goal running

; reaction meanwhile!
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Beliefs representation
Agent Abstractions

Syntax

Beliefs are represented by annotated literals of first order logic

functor(term1, ..., termn)[annot1, ..., annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].

~lier(bob)[source(self)].
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Goals representation
Agent Abstractions

Syntax

Goals are represented as beliefs with a prefix:
I ! to denote achievement goal (goal to do)
I ? to denote test goal (goal to know)

Example (Initial goal of agent Tom)

!write(book).
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Plans representation
Agent Abstractions

Syntax

An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:
I triggering_event: events that the plan is meant to handle
I context: situations in which the plan can be used
I body: course of action to be used to handle the event if the

context is believed to be true at the time a plan is being chosen to
handle the event
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Plans representation – Triggering events
Agent Abstractions

I Events happen as consequence to changes in the agent’s beliefs or
goals

I An agent reacts to events by executing plans

Syntax

I belief addition: +b
I belief deletion: -b
I achievement-goal addition: +!g
I achievement-goal deletion: -!g
I test-goal addition: +?g
I test-goal deletion): -?g
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Plans representation – Context
Agent Abstractions

Context is a boolean expression with the following operators:

Syntax

I Boolean operators
& (and)
| (or)

not (not)
= (unification)

>, >= (relational)
<, <= (relational)

== (equals)
\== (different)

I Arithmetic operators
+ (sum)
- (subtraction)
* (multiply)
/ (divide)

div (divide – integer)
mod (remainder)

** (power)

18



Plans representation – Body
Agent Abstractions

A plan body may contain:
I Belief operators

+ (new belief)
- (dispose belief)

-+ (update belief)

I Goal operators
! (new achievement sub-goal)
? (new test sub-goal)
!! (new achievement goal)

I External actions defined from artifact operations (see course on
Agent Working Environment)

I Internal actions
I Unlike actions, internal actions do not change the environment
I Encapsulate code to be executed as part of the agent reasoning

cycle
I Internal actions can be used for invoking legacy code

I Constraints
19



Internal Actions
Agent Abstractions

I Internal actions can be defined by the user in Java
libname.action_name(...)

I Standard (pre-defined) internal actions in standard library (no
library name):
I .print(term1,term2, . . .)
I .union(list1, list2, list3)
I .my_name(var)
I .send(ag,perf ,literal)
I .intend(literal)
I .drop_intention(literal)

I Many others available for: printing, sorting, list/string operations,
manipulating the beliefs/annotations/plan library, creating agents,
waiting/generating events, etc.
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Plans representation
Agent Abstractions

Example

+rain : time_to_leave(T) & clock.now(H) & H >= T
<- !g1; // new sub-goal

!!g2; // new goal

?b(X); // new test goal

+b1(T-H); // add mental note

-b2(T-H); // remove mental note

-+b3(T*H); // update mental note

jia.get(X); // internal action

X > 10; // constraint to carry on

close(door);// external action

!g3[hard_deadline(3000)]. // goal with deadline
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Plans representation
Agent Abstractions

Example

+green_patch(Rock)[source(percept)]
: not battery_charge(low)
<- ?location(Rock,Coordinates);

!at(Coordinates);
!examine(Rock).

+!at(Coords)
: not at(Coords) & safe_path(Coords)
<- move_towards(Coords);

!at(Coords).
+!at(Coords)

: not at(Coords) & not safe_path(Coords)
<- ...

+!at(Coords) : at(Coords).
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Agent dynamics
Agent Dynamics
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Basic Reasoning cycle
runtime interpreter

I perceive the environment and update belief base
I process new messages
I select event
I select relevant plans
I select applicable plans
I create/update intention
I select intention to execute
I execute one step of the selected intention
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Basic Reasoning Cycle
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Basic Reasoning Cycle
Jason Reasoning Cycle
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I machine perception

I belief revison

I knowledge

representation

I communication,

argumentation

I trust

I social power
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Basic Reasoning Cycle
Jason Reasoning Cycle
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I planning

I reasoning

I decision theoretic

techniques

I learning

(reinforcement)
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Basic Reasoning Cycle
Jason Reasoning Cycle
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I intention

reconsideration

I scheduling

I action theories
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Beliefs dynamics
Agent Dynamics

Internal reasoning

The plan operators + and - can be used to add and remove beliefs
annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice)[source(self)]

-lier(john); // removes lier(john)[source(self)]

Perception (from the environment)

Beliefs are automatically updated accordingly to the perception of the
agent (annotated with source(percept))
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Beliefs dynamics
Agent Dynamics

Communication (from other agents)

When an agent receives a tell (resp. untell) message, the content is a
new belief (annotated with the sender of the message) (resp. belief
corresponding to the content is deleted)

.send(tom,tell,lier(alice)); // sent by bob

// adds lier(alice)[source(bob)] in Tom’s Belief Base

...

.send(tom,untell,lier(alice)); // sent by bob

// removes lier(alice)[source(bob)] from Tom’s Belief Base
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Goals dynamics
Agent Dynamics

Internal reasoning

The plan operators !, !! and ? are used to add a new goal (annotated
with source(self))

...
// adds new achievement goal !write(book)[source(self)]

!write(book);

// adds new test goal ?publisher(P)[source(self)]

?publisher(P);
...

29



Goals dynamics
Agent Dynamics

Communication of achievement goal

When an agent receives an achieve message, the content is a new
achievement goal (annotated with the sender of the message)

.send(tom,achieve,write(book)); // sent by Bob

// adds new goal write(book)[source(bob)] for Tom

.send(tom,unachieve,write(book)); // sent by Bob

// removes goal write(book)[source(bob)] for Tom

Communication of test goal

When an agent receives an askOne or askAll message, the content is a
new test goal (annotated with the sender of the message)

.send(tom,askOne,published(P),Answer); // sent by Bob

// adds new goal ?publisher(P)[source(bob)] for Tom

// the response of Tom will unify with Answer

30



Plans dynamics
Agent Dynamics

The plans that form the plan library of the agent come from
I plans added (resp. removed) dynamically by intentions in internal

reasoning:
I .add_plan (resp. .remove_plan)

I plans added (resp. removed) by communication:
I tellHow (resp. untellHow)

Example

.send(bob, askHow, +!goto(_,_)[source(_)], ListOfPlans);

...

.plan_label(Plan,hp); // get a plans based on a plan’s label

.send(A,tellHow,Plan);

.send(bob,tellHow,"+!start : true <- .println(ḧello)̈.").
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A note about “Control”

Agents can control (manipulate) their own (and influence the others)
I beliefs
I goals
I plan

By doing so they control their behaviour

The developer provides initial values of these elements and thus also
influence the behaviour of the agent
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Namespace
Other language features

I Abstract container in the mind of agent, created to hold a logical
grouping of beliefs, goals, events, plans and actions

I Identified by a name, used to prefix (using ::) the elements
belonging to it:

ns1::color(box,blue) // color is in namespace ns1
I Two types:

I Global namespace: any element associated with the global
namespace can be consulted, changed by any other namespace

I Local namespace: elements can only be used by the namespace
I ; possibility of sharing elements by means of a common global

namespace
I Namespace can be defined by:

I module program of beliefs, goals and plans (i.e. a usual agent
program).
Every agent has one initial module (its initial program) into which
other modules can be loaded

I associating observable properties or actions of artifacts
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Modules and Namespaces
Other language features

Namespaces & Modularity

51
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Modules and Namespaces
Other language featuresNamespaces & Modularity

–include(”initiator.asl”, pc)˝

–include(”initiator.asl”, tv)˝

!pc::startCNP(fix(pc)).

!tv::startCNP(fix(tv)).

+pc::winner(X)

¡- .print(X).

52
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Strong Negation
Other language features

+!leave(home)
: ~raining
<- open(curtains); ...

+!leave(home)
: not raining & not ~raining
<- .send(mum,askOne,raining,Answer,3000); ...
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Prolog-like Rules in the Belief Base
Other language features

tall(X) :-
woman(X) & height(X, H) & H > 1.70
|
man(X) & height(X, H) & H > 1.80.

likely_color(Obj,C) :-
colour(Obj,C)[degOfCert(D1)] &
not (colour(Obj,_)[degOfCert(D2)] & D2 > D1) &
not ~colour(C,B).

41



Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

42



Plan Annotations
Other language features

I Like beliefs, plans can also have annotations, which go in the plan
label

I Annotations contain meta-level information for the plan, which
selection functions can take into consideration

I The annotations in an intended plan instance can be changed
dynamically (e.g. to change intention priorities)

I There are some pre-defined plan annotations, e.g. to force a
breakpoint at that plan or to make the whole plan execute
atomically

Example (an annotated plan)

@myPlan[chance_of_success(0.3), usual_payoff(0.9),
any_other_property]

+!g(X) : c(t) <- a(X).
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Concurrent Plans
Other language features

I fork-join-and operator |&|

+!ga <- ...; !gb; ....
+!gb <- ...; (!g1 |&| !g2); a1; ... // fork-join-and
// a1 will be executed when !g2 and !g1 will be achieved
I fork-join-xor operator |||

+!ga <- ...; !gb; ....
+!gb <- ...; (!g1 ||| !g2); a1; ... // fork-join-xor
// a1 will be executed after !g2 or !g1 are achieved
// when one of !g2 or !g1 is achieved the other is dropped

-!g1 : true <- !g1. // in case of some failure
-!g2 : true <- !g2. // in case of some failure
+g1 : true <- .succeed_goal(g1).
+g2 : true <- .succeed_goal(g2).
+f1 : true <- .fail_goal(g1). // f1 drop condition for g1
+f2 : true <- .fail_goal(g2). // f2 drop condition for g2
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Declarative Goal Patterns: Achievement goal
Other language features

Example (Example)

+!g : g <- true. // g declarative goal

+!g : c1 <- p1; ?g.
+!g : c2 <- p2; ?g.
...
+!g : cn <- pn; ?g.
+g : true <- .succeed_goal(g).
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Backtracking Declarative Goal Patterns
Other language features

Example (Example)

+!g : g <- true. // g declarative goal

+!g : c1 <- p1; ?g.
+!g : c2 <- p2; ?g.
...
+!g : cn <- pn; ?g.
+g : true <- .succeed_goal(g).
-!g : true <- !!g.
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Exclusive Backtracking Declarative Goal Pattern
Other language features

Example (Example)

+!g : g <- true. // g declarative goal

+!g : not p(1,g) & c1 <- +p(1,g); p1; ?g.
+!g : not p(2,g) & c2 <- +p(2,g); p2; ?g.
...
+!g : not p(n,g) & cn <- +p(n,g); pn; ?g.
-?g : true <- !!g.
+g : true <- .abolish(p(_,g); .succeed_goal(g).
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Failure Handling: Contingency Plans
Other language features

Example (Example)

!g1 // initial goal

+!g1 : true <- !g2(X); .print(“end g1 “,X).
+!g2 : true <- !g3(X); .print(“end g2 “,X).
+!g3 : true <- !g4(X); .print(“end g3 “,X).
+!g4 : true <- !g5(X); .print(“end g4 “,X).
+!g5 : true <- .fail.

-!g3(X) : true <- .print(“in g3 failure”).
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Failure Handling: Contingency Plans
Other language features

Example (Example)

!g1 // initial goal

+!g1 : true <- !g2(X); .print(“end g1 “,X).
+!g2 : true <- !g3(X); .print(“end g2 “,X).
+!g3 : true <- !g4(X); .print(“end g3 “,X).
+!g4 : true <- !g5(X); .print(“end g4 “,X).
+!g5 : true <- .fail.

-!g3(X) : true <- .print(“in g3 failure”).
saying: in g3 failure
saying: end g2 failure
saying: end g1 failure
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Failure Handling: Contingency Plans
Other language features

Example (blind commitment to g)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g : true <- !g. // keep trying
-!g : true <- !g. // in case of some failure

+g : true <- .succeed_goal(g).
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Failure Handling: Contingency Plans
Other language features

Example (single minded commitment)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g : true <- !g. // keep trying
-!g : true <- !g. // in case of some failure

+g : true <- .succeed_goal(g).
+f : true <- .fail_goal(g). // f is the drop
condition for g
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Failure Handling: Compiler pre-processing – directives
Other language features

Example (single minded commitment)

{ begin smc(g,f)}
+!g : ... <- a1.
+!g : ... <- a2.
+!g : ... <- a3.

{ end }

52



Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

53



Meta Programming
Other language features

Example (an agent that asks for plans on demand)

-!G[error(no_relevant)] : teacher(T)
<- .send(T, askHow, { +!G }, Plans);

.add_plan(Plans);
!G.

in the event of a failure to achieve any goal G due to no relevant
plan, asks a teacher for plans to achieve G and then try G again

I The failure event is annotated with the error type, line, source, ...
error(no_relevant) means no plan in the agent’s plan library to
achieve G

I { +!G } is the syntax to enclose triggers/plans as terms
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Integrating A & A dimensions

dynamic relation

composition
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Communicative Actions

Use of the internal action .send with performative verbs and
corresponding content:
I tell, untell: to share beliefs,
I achieve, unachieve: to delegate achievement goal,
I askOne, askAll: to delegate test goal,
I askHow: to request plans,
I tellHow, untellHow: to share plans.
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Jason Customisations

I Agent class customisation:
selectMessage, selectEvent, selectOption, selectIntention, buf, brf,
...

I Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

I Belief base customisation:
add, remove, contains, ...
I Example available with Jason: persistent belief base (in text files, in

data bases, ...)
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Jason × Java

Consider a very simple robot with two goals:
I when a piece of gold is seen, go to it
I when battery is low, go charge it
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Java code – go to gold

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));

}
while (seeGold) {

a = selectDirection();

doAction(go(a));

} } } }
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Java code – charge battery

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));
if (lowBattery) charge();

}
while (seeGold) {

a = selectDirection ();
if (lowBattery) charge();
doAction(go(a));
if (lowBattery) charge();

} } } }
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Jason code

direction(gold) :- see(gold).
direction(random) :- not see(gold).

+!find(gold) // long term goal
<- ?direction(A);

go(A);
!find(gold).

+battery(low) // reactivity
<- !charge.

ˆ!charge[state(started)] // goal meta-events
<- .suspend(find(gold)).

ˆ!charge[state(finished)]
<- .resume(find(gold)).
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Fibonacci calculator server – “java” versionFibonacci calculator server – “java” version

Fibonaccer Bob

Alice

fib(40)

fib(3)

while true int fib(int n)

m = receiveMsg() if n ¡= 2

if m == fib(N) return 1

m.answer(fib(m.getArg(0))) else

... return fib(n-1)+fib(n-2)

How long will Alice wait?
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Fibonacci calculator server – AkkaFibonacci calculator server – Akka

60
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Fibonacci calculator agent – Jason versionFibonacci calculator agent – version Jason

Fibonaccer Bob

Alice

fib(40)

fib(3)

+?fib(1,1).

+?fib(2,1).

+?fib(N,F) ¡- ?fib(N-1,A); ?fib(N-2,B); F = A+B.

How long will Alice wait?
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Fibonacci calculator agent – Jason versionFibonacci calculator server – Jason
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Jason × Prolog

I With the Jason extensions, nice separation of theoretical and
practical reasoning

I BDI architecture allows
I long-term goals (goal-based behaviour)
I reacting to changes in a dynamic environment
I handling multiple foci of attention (concurrency)

I Acting on an environment and a higher-level conception of a
distributed system
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Some Shortfalls

I IDEs and programming tools are still not anywhere near the level
of OO languages

I Debugging is a serious issue — much more than “mind tracing” is
needed

I Combination with organisational models is very recent — much
work still needed

I Principles for using declarative goals in practical programming
problems still not “textbook”

I Large applications and real-world experience much needed!
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Some Trends

I Modularity and encapsulation
I Debugging MAS is hard: problems of concurrency, simulated

environments, emergent behaviour, mental attitudes
I Logics for Agent Programming languages
I Further work on combining with interaction, environments, and

organisations
I We need to put everything together: rational agents,

environments, organisations, normative systems, reputation
systems, economically inspired techniques, etc.

; Multi-Agent Programming

72



Some Related Projects I

I Speech-act based communication
Joint work with Renata Vieira, Álvaro Moreira, and Mike
Wooldridge

I Cooperative plan exchange
Joint work with Viviana Mascardi, Davide Ancona

I Plan Patterns for Declarative Goals
Joint work with M.Wooldridge

I Planning (Felipe Meneguzzi and Colleagues)
I Web and Mobile Applications (Alessandro Ricci and Colleagues)
I Belief Revision

Joint work with Natasha Alechina, Brian Logan, Mark Jago

73



Some Related Projects II

I Ontological Reasoning
I Joint work with Renata Vieira, Álvaro Moreira
I JASDL: joint work with Tom Klapiscak

I Goal-Plan Tree Problem (Thangarajah et al.)
Joint work with Tricia Shaw

I Trust reasoning (ForTrust project)
I Agent verification and model checking

Joint project with M.Fisher, M.Wooldridge, W.Visser, L.Dennis,
B.Farwer
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Some Related Projects III

I Environments, Organisation and Norms
I Normative environments

Join work with A.C.Rocha Costa and F.Okuyama
I MADeM integration (Francisco Grimaldo Moreno)
I Normative integration (Felipe Meneguzzi)

I More on jason.sourceforge.net, related projects
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Summary

I AgentSpeak
I Logic + BDI
I Agent programming language

I Jason
I AgentSpeak interpreter
I Implements the operational semantics of AgentSpeak
I Speech-act based communicaiton
I Highly customisable
I Useful tools
I Open source
I Open issues
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Further Resources

I http://jason.sourceforge.net

I R.H. Bordini, J.F. Hübner, and
M. Wooldrige
Programming Multi-Agent Systems in
AgentSpeak using Jason
John Wiley & Sons, 2007.
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Further Resources

I http://jacamo.sourceforge.net

I O. Boissier, R.H. Bordini, J.F. Hübner,
and A. Ricci
Multi-Agent Oriented Programming:
Programming Multi-Agent Systems
Using JaCaMo
MIT Press, 2020.
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