Multi-Agent Programming

— Programming Autonomous Agents —

O. Boissier

Univ. Clermont Auvergne, IMT Mines Saint-Etienne, LIMOS UMR CNRS 6158, France

CPS2 M1 - Fall 2021

/ 1
ol 101

Une école de I'MT

http://www.emse.fr/~boissier/

JaCaMo meta-model

Organisation

Organisation

Dimension

dynamic relation ..

composition
o COMpOSHION

‘ Environment

Workspace Observable
* property

Environment Agent

Interaction

Simplified view on JaCaMo meta-model [Boissier et al., 2020, Boissier et al., 2011]
A seamless integration of three dimensions based on Jason [Bordini et al., 2007],
rtago [Ricci et al., 2009], ise [Hibner et al., 2009] meta-models

N

Agent dimension

Dimension .
Belief Goal

* =t 2 ’
*
¥
| Action |—.——0 Agent " Plan

CO pOSitiOﬂ .)
o——r-"
Agent

Simplified Conceptual View (Jason meta-model [Bordini et al., 2007]):

Simple Agent Program:

happy(bob) . //: Mlhal belief +happy(A) <~ !say(helloCA)).
jiaz%hellia. // initial godl +!say(A) : not today(friday) <- .print(X); !say(X).
ans +!say(X) : today(friday) <- .print("stop").

+!say(X) : happy(bob) <- .print(X).

Jy -happy(A) : .my_name(A) <- .drop_intention(say(_)).

example bob.asl example carl.asl

Agent in JaCaMo: Jason

The foundational language for Jason is AgentSpeak
» Originally proposed by Rao [Rao, 1996]
» Programming language for BDI agents
» Elegant notation, based on

» Inspired by PRS [Georgeff and Lansky, 1987], dMARS
[d'Inverno et al., 1997], and BDI Logics [Rao et al., 1995]

» Abstract programming language aimed at theoretical results

Jason

A practical implementation of a variant of AgentSpeak

» _Jason implements the operational semantics of a variant of
AgentSpeak

» Has various extensions aimed at a more practical programming
language (e.g. definition of the MAS, communication, ...)

» Highly customised to simplify extension and experimentation
» Developed by Jomi F. Hiibner, Rafael H. Bordini, and others

Qutline

Agent Abstractions

Main Language Constructs

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’'s know-how
can be internal, external, communicative or
organisational ones

identifiers starting in upper case denote variables

Main Language Constructs and Runtime Structures

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’'s know-how
can be internal, external, communicative or
organisational ones

Runtime structures:
Events: happen as consequence to changes in the agent’s beliefs
or goals
Intentions: plans instantiated to achieve some goal

identifiers starting in upper case denote variables

(BDI & Jason) Hello World — agent bob

happy (bob) . // B
I'say(hello). // D

+!say(X) : happy(bob) <- .print(X).

beliefs: prolog like (First Order Logic)

(BDI & Jason) Hello World — agent bob

happy (bob) . // B
I'say(hello). // D

+1say(X) : happy(bob) <- .print(X).

beliefs: prolog like (First Order Logic)
desires: prolog like, with ' prefix

(BDI & Jason) Hello World — agent bob

happy (bob) . // B
I'say(hello). // D

+!say(X) : happy(bob) <- .print(X).

beliefs: prolog like (First Order Logic)
desires: prolog like, with ' prefix
plans:

» define when a desire becomes an intention ~» deliberate
» how it is satisfied

» are used for practical reasoning ~ means-end

(BDI & Jason) Hello World — agent bob

desires from perception — options

+happy (bob) <- !say(hello).

+!say(X) : not today(monday) <- .print(X).

(BDI & Jason) Hello World — agent bob

source of beliefs

+happy (bob) [source(4)]
someone_who_knows_me_very_well (4)
<- !say(hello).

+!say(X) : not today(monday) <- .print(X).

10

(BDI & Jason) Hello World — agent bob

plan selection

+happy (H) [source(4)]
sincere(4) & .my_name(H)
<- !say(hello).

+happy (H)
not .my_name(H)

<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X).

11

(BDI & Jason) Hello World — agent bob

intention revision

+happy (H) [source(4)]
sincere(4) & .my_name(H)
<- !say(hello).

+happy (H)
not .my_name(H)

<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X);

Isay(X).

12

(BDI & Jason) Hello World — agent bob

intention revision

+happy (H) [source(4)]
sincere(4) & .my_name(H)
<- !say(hello).

+happy (H)
not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X);
-happy (H)

.my_name (H)
<- .drop_intention(say(hello)).

Isay(X).

12

(BDI & Jason) Hello World — agent bob

intention revision / Features

» we can have several intentions based on the same plans
~» running concurrently
» long term goal running

~» reaction meanwhile!

13

Beliefs representation
Agent Abstractions

Syntax

Beliefs are represented by annotated literals of first order logic

functor(termy, ..., termp)[annoty, ..., annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].
friend(bob,alice) [source(bob)].
lier(alice)[source(self),source(bob)].
~lier(bob)[source(self)].

14

Goals representation
Agent Abstractions

Syntax

Goals are represented as beliefs with a prefix:
» | to denote achievement goal (goal to do)

» ? to denote test goal (goal to know)

Example (Initial goal of agent Tom)

lwrite(book).

15

Plans representation
Agent Abstractions

Syntax
An AgentSpeak plan has the following general structure:
triggering _event : context <- body.

where:
> triggering event: events that the plan is meant to handle
» context: situations in which the plan can be used

» body: course of action to be used to handle the event if the
context is believed to be true at the time a plan is being chosen to
handle the event

16

Plans representation — Triggering events
Agent Abstractions

» Events happen as consequence to changes in the agent’s beliefs or
goals

» An agent reacts to events by executing

Syntax

» belief addition: +b
belief deletion: -b
achievement-goal addition:

>
>
» achievement-goal deletion:
» test-goal addition: +7g

>

test-goal deletion): -7g

Plans representation — Context
Agent Abstractions

Context is a boolean expression with the following operators:

Syntax
> o o
Boolean operators > Arithmetic operators
& (and) . (]
not‘ Es;)t) - (subtraction)
= (unification) * (multiply)
_ / (divide)

>= (relational)

<, <= (relational)
== (equals)

\ == (different)

v

div (divide — integer)
mod (remainder)
** (power)

18

Plans representation — Body

Agent Abstractions
A plan body may contain:
» Belief operators
+ (new belief)
- (dispose belief)
-+ (update belief)

» Goal operators

I (new achievement sub-goal)
? (new test sub-goal)
' (new achievement goal)

> External actions defined from artifact operations (see course on
> Internal actions

» Unlike actions, internal actions do not change the environment

» Encapsulate code to be executed as part of the agent reasoning
cycle

» Internal actions can be used for invoking legacy code

» Constraints

19

Internal Actions
Agent Abstractions

» Internal actions can be defined by the user in Java
libname.action_name(...)

» Standard (pre-defined) internal actions in standard library (no
library name):
» _print(termy,terms,...)
.union(/isty, listy, list3)
.my_name (var)
.send(ag, perf , literal)
.intend (/iteral)
.drop_intention (/iteral)

vVvVvyYVvyy

» Many others available for: printing, sorting, list/string operations,
manipulating the beliefs/annotations/plan library, creating agents,
waiting/generating events, etc.

Plans representation
Agent Abstractions

Example
+rain : time_to_leave(T) & clock.now(H) & H >= T
<- lgi; // new sub-goal
g2, // new goal
?b(X) ; // new test goal
+b1 (T-H) ; // add mental note
-b2(T-H) ; // remove mental note

-+b3(T*H) ; // update mental note

jia.get (X); // internal action

X > 10; // constraint to carry on

close(door) ;// external action
g3 [hard_deadline (3000)].

// goal with deadline

21

Plans representation
Agent Abstractions

(GMom

Example

+green_patch (Rock) [source(percept)]
not battery_charge(low)
<- ?location(Rock,Coordinates) ;
lat (Coordinates) ;
lexamine (Rock) .

+!at (Coords)
not at(Coords) & safe_path(Coords)
<- move_towards (Coords) ;
lat (Coords) .
+!at (Coords)
not at(Coords) & not safe_path(Coords)
<- L.
+lat (Coords) : at(Coords).

22

Qutline

Agent Dynamics

23

Agent dynamics

Agent Dynamics

Belief A gen[
l Beliefs | Base
1
Percepts . Percepls
—*1 perceive BUF > BRE
External Externd
Events Events | Events
2
Beliefsto Internal
SocAcc Add and Events,
Delete
Messages 3 Messages
———* checkMail

Actions
—

Suspended I ntentions

Intentions
(Actions and Msgs)

0

Updeted
Intention

]
-

Basic Reasoning cycle

runtime interpreter

perceive the environment and update belief base
process new messages

select event

select relevant plans

select applicable plans

create/update intention

select intention to execute

vVVvVvvyVvvVvyVvyYVvyy

execute one step of the selected intention

25

Basic Reasoning Cycle

Percepts

Belief

Beliefs |Base

' Percepts|
perceive BUF | BRF

Beliefs

10
Execute
Intention

External External ——
Events Events | Events
0
Beliefsto Internal
SocAce Add and Events,
Delete
3
Messages
checkMail Intended
~ Means
Suspended Intentions Intentions

(Actionsand Msgs)

0

Agent

Plan
Library

Actions.
—

Messages
—

N
o))

Basic Reasoning Cycle

Percepts

Messages

1
Percepts

perceive

External
Events

SocAcc

3

Messages

| checkMail

machine perception
belief revison

knowledge
representation

communication,
argumentation

trust

social power

Basic Reasoning Cycle

Belief

Beliefs | Base

External
Events | Events

Internal

Events,

Events

Selected
Event

Beliefs

Relevant
Plans

Plans

Applicable

Plans
Selecte
Intended Intentt

~ Means
\ So
\ N
Intentlons Push
New Plan

v

planning

v

reasoning
decision theoretic
techniques

v

v

learning
(reinforcement)

Basic Reasoning Cycle

Selected
Intention

Intentions

L Beliefs

Action

Updated
Intention

.send

sendMsg

> intention
Actions reconsideration

» scheduling
» action theories

Messages

Beliefs dynamics
Agent Dynamics

Internal reasoning

The plan operators + and - can be used to add and remove beliefs
annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice) [source(self)]
—lier(john); // removes lier(john) [source(self)]

Perception (from the environment)

Beliefs are automatically updated accordingly to the perception of the
agent (annotated with source(percept))

27

Beliefs dynamics
Agent Dynamics

Communication (from other agents)

When an agent receives a tell (resp. untell) message, the content is a
new belief (annotated with the sender of the message) (resp. belief
corresponding to the content is deleted)

.send (tom,tell,lier(alice)); // sent by bob

// adds lier(alice) [source(bob)] in Tom’s Belief Base

.send (tom,untell,lier(alice)); // sent by bob

// removes lier(alice) [source(bob)] from Tom’s Belief Base

28

Goals dynamics
Agent Dynamics

Internal reasoning

The plan operators !, 1! and ? are used to add a new goal (annotated
with source(self))

// adds new achievement goal !write(book) [source(self)]

lwrite(book) ;

// adds new test goal ?publisher(P) [source(self)]
?publisher(P) ;

(GMom

29

Goals dynamics
Agent Dynamics

Communication of achievement goal

When an agent receives an achieve message, the content is a new
achievement goal (annotated with the sender of the message)

.send (tom,achieve,write(book)); // sent by Bob
// adds new goal write(book) [source(bob)] for Tom
.send (tom,unachieve,write(book)); // sent by Bob

// removes goal write(book) [source(bob)] for Tom

Communication of test goal

When an agent receives an askOne or askAll message, the content is a
new test goal (annotated with the sender of the message)

.send (tom, askOne,published(P) ,Answer); // sent by Bob
// adds new goal ?publisher(P) [source(bob)] for Tom

// the response of Tom will unify with Answer

30

Plans dynamics
Agent Dynamics

The plans that form the plan library of the agent come from

» plans added (resp. removed) dynamically by intentions in internal
reasoning:

» .add_plan (resp. .remove plan)
» plans added (resp. removed) by communication:
> tellHow (resp. untellHow)

Example
.send (bob, askHow, +!goto(_,_) [source(_)], ListOfPlans);

.plan_label (Plan,hp); // get a plans based on a plan’s label
.send(A,tellHow,Plan);

.send (bob,tellHow, "+!start : true <- .println(ﬁe1105 2T

31

A note about “Control”

Agents can control (manipulate) their own (and influence the others)
» beliefs
» goals
» plan

By doing so they control their behaviour

The developer provides initial values of these elements and thus also
influence the behaviour of the agent

w

N

Outline

Other language features

33

Outline

Agent Abstractions
Agent Dynamics

Other language features
Namespaces

Integrating A & A dimensions
Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

34

Namespace

Other language features

» Abstract container in the mind of agent, created to hold a logical
grouping of beliefs, goals, events, plans and actions

> |dentified by a name, used to prefix (using ::) the elements
belonging to it:
nsl::color(box,blue) // color is in namespace nsl
» Two types:
» Global namespace: any element associated with the global
namespace can be consulted, changed by any other namespace
» Local namespace: elements can only be used by the namespace
» ~. possibility of sharing elements by means of a common global
namespace
» Namespace can be defined by:
» module program of beliefs, goals and plans (i.e. a usual agent
program).
Every agent has one initial module (its initial program) into which
other modules can be loaded
» associating observable properties or actions of artifacts

Modules and Namespaces

Other language features

Agent
init

load

Global

; o

M’ il

| Belief I Plan I | Goal I

Namespace

36

Modules and Namespaces

Other language features

Inspection of agent alice

- Beliefs
tvi:
introduction(participant){source(compan
{include("initiator.asl", pc)} propose(11.075337225252543)surc
{include("initiator.asl", tv)} propose(12.043311087442898)s0urc
propose(12.81277904935436)(source

Ipc: :startCNP (fix(pc)).)
p p winner(company_A1)[soume(sem].

Itv: :startCNP (fix (tv)).

#8priv::

+pc: :winner (X) state(finished)(source(self)-

<- .print(X).

pc::
introduction(participant)[soume(mmpar
propose(11.389500048463455)(sourc
propose(11.392553683771682)(sourc
propose(12.348901000262853)sourc
Winner(comPa"y_Az)[source(self)]-

Outline

Agent Abstractions
Agent Dynamics

Other language features

Strong Negation

Integrating A & A dimensions
Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

38

Strong Negation

Other language features

+!leave (home)
~raining
<- open(curtains);

+1leave (home)

not raining & not ~raining
<- .send(mum,askOne,raining, Answer,3000) ;

(GMom

39

Outline

Agent Abstractions
Agent Dynamics

Other language features

Prolog-like Rules

Integrating A & A dimensions
Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

40

Prolog-like Rules in the Belief Base

Other language features

tall(X) :-
woman (X) & height(X, H) & H > 1.70
|
man(X) & height(X, H) & H > 1.80.

likely_color(Obj,C) :-
colour(0bj,C) [deg0fCert(D1)] &
not (colour(Obj,_) [degOfCert(d2)] & D2 > D1) &
not ~colour(C,B).

(GMom

41

Outline

Agent Abstractions
Agent Dynamics

Other language features

Plan Annotations & Concurrent Plans

Integrating A & A dimensions
Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

42

Plan Annotations

Other language features

» | ike beliefs, plans can also have , which go in the plan

» Annotations contain meta-level information for the plan, which
selection functions can take into consideration

» The annotations in an intended plan instance can be changed
(e.g. to change intention priorities)
» There are some pre-defined plan annotations, e.g. to force a
breakpoint at that plan or to make the whole plan execute
atomically

Example (an annotated plan)

@myPlan [chance_of_success(0.3), usual_payoff(0.9),
any_other_property]
+1gX) @ c(t) <- a(X).

43

Concurrent Plans

Other language features

(GMom

» fork-join-and operator |&|

+lga <- ...; !gb; ..

+lgb <= ...; (gl |& 'g2); al; ... // fork-join-and

// al will be executed when !g2 and !gl will be achieved
» fork-join-xor operator |||
+lga <- ...; lgb; ..
+lgb <- ...; (gl ||| 'g2); al; ... // fork-join-xor

// al will be executed after !g2 or !gl are achieved

// when one of !g2 or !gl is achieved the other is dropped

-1gl : true <- !gl. // in case of some failure
-1g2 : true <- !g2. // in case of some failure
+gl : true <- .succeed_goal(gl).

+g2 : true <- .succeed_goal(g2).
+f1 : true <- .fail_goal(gl). // f1 drop condition for gl
+f2 : true <- .fail_goal(g2). // £2 drop condition for g2

44

Outline

Agent Abstractions
Agent Dynamics

Other language features

Declarative Goal Patterns

Integrating A & A dimensions
Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

45

Declarative Goal Patterns: Achievement goal

Other language features

Example (Example)

+!lg . g <- true. // g declarative goal

+lg : cl <- pl; 7g.
+lg @ c2 <- p2; 7g.

+!g : cn <- pn; 7g.
+g : true <- .succeed goal(g).

46

Backtracking Declarative Goal Patterns

Other language features

Example (Example)

+!g . g <- true. // g declarative goal

+lg: cl <- pl; 7g.
+lg : 2 <- p2; 7qg.

+!g : cn <- pn; ?g.

+g : true <- .succeed goal(g).
-lg : true <- llg.

47

Exclusive Backtracking Declarative Goal Pattern

Other language features

Example (Example)

+1g

+lg :
+lg :

+lg :
-79g :
: true <- .abolish(p(_,9g); .succeed goal(g).

+9

. g <- true. // g declarative goal

not p(1,9) & cl <- +p(1,9); pl; 7g.
not p(2,9) & c2 <- +p(2,9); p2; 79.

not p(n,g) & cn <- +p(n,g); pn; ?g.
true <- llg.

48

Failure Handling: Contingency Plans

Other language features

Example (Example)
lgl // initial goal

+lgl @ true <- 1g2(X); .print(“end g1 “ X).
+1g2 : true <- Ig3(X); .print(“end g2 “ X).
+1g3 : true <- lg4(X); .print(“end g3 “ X).
+1g4 : true <- Ig5(X); .print(“end g4 " X).
+!g5 : true <- .fail.

-1g3(X) : true <- .print(“in g3 failure”).

49

Failure Handling: Contingency Plans

Other language features

Example (Example)
lgl // initial goal

+!g1 : true <- 1g2(X); .print(“end g1 “
+1g2 @ true <- 1g3(X); .print(“end g2 “
+1g3 : true <- lg4(X); .print(“end g3 “
+!g4 : true <- 1g5(Xx); .print(“end g4 “
+1g5 : true <- fail.

-193(X) : true <- .print(“in g3 failure”).
saying: in g3 failure

saying: end g2 failure

saying: end g1 failure

Failure Handling: Contingency Plans

Other language features

(GMom

Example (blind commitment to g)

+lg
+lg
+lg
+lg

+lg

+g:

g. // g is a declarative goal

true <-
true <-

true <-

al; 7g.
a2; 7g.
a3; 7g.

lg. // keep trying
lg. // in case of some failure

.succeed_goal(g) .

50

Failure Handling: Contingency Plans

Other language features

(GMom

Example (single minded commitment)

+lg

+lg
+lg
+lg

+lg
-lg :

tg
+f
condition for g

g. // g is a declarative goal

true <-
true <-

true <-
true <-

al; 7g.
a2; 7g.
a3d; 7g.

lg. // keep trying
lg. // in case of some failure

.succeed_goal(g) .
.fail_goal(g). // f is the drop

51

Failure Handling: Compiler pre-processing — directives

Other language features

Example (single minded commitment)

{ begin smc(g,f)}

+lg : ... <- al.

+lg : ... <- a2.

+lg ¢+ ... <- a3.
{ end }

Outline

Agent Abstractions
Agent Dynamics

Other language features

Meta Programming
Integrating A & A dimensions
Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

53

Meta Programming

Other language features

Example (an agent that asks for plans on demand)

-1G[error(no_relevant)] : teacher(T)
<- .send(T, askHow, { +!G }, Plans);
.add_plan(Plans) ;
1G.
in the event of a failure to achieve any goal G due to no relevant
plan, asks a teacher for plans to achieve G and then try G again

» The failure event is annotated with the error type, line, source, ...

error(no_relevant) means no plan in the agent'’s plan library to
achieve G

> { +1G } is the syntax to enclose triggers/plans as terms

54

Outline

Integrating A & A dimensions

55

Integrating A & A dimensions

communicate
SR ITLTT >

composition

Interaction

>—————
Belief Goal
Event
| Action }-.—0 Agent Plan |
Agent)

Dimension

56

Communicative Actions

Use of the internal action .send with performative verbs and

corresponding content:
» tell, untell: to share beliefs,
» achieve, unachieve: to delegate achievement goal,
» askOne, askAll: to delegate test goal,
» askHow: to request plans,
| 4

tellHow, untellHow: to share plans.

57

Outline

Agent Management Infrastructure in JaCaMo

58

Jason Customisations

> class customisation:
selectMessage, selectEvent, selectOption, selectintention, buf, brf,

> Agent customisation:
perceive, act, sendMsg, checkMail, ...

> customisation:
add, remove, contains, ...

» Example available with Jason: persistent belief base (in text files, in
data bases, ...)

59

Outline

Comparison with other paradigms

60

Jason x Java

Consider a very simple robot with two goals:
» when a piece of gold is seen, go to it

» when battery is low, go charge it

61

Java code — go to gold

public class Robot extends Thread {
seeGold, lowBattery;
public void run() {
(true) {
(! seeGold) {
a = randomDirection();

doAction(go(a));
}
(seeGold) {
a = selectDirection();
doAction(go(a));
r X r 3}

(GMom

Java code — charge battery

public class Robot extends Thread {

seeGold, lowBattery;
public void run() {
(true) {

(! seeGold) {

a = randomDirection();
doAction(go(a));

(lowBattery) charge(Q);

}
(seeGold) {
a = selectDirection ();
(lowBattery) charge();
doAction(go(a));
(lowBattery) charge();
r X r 3}

(GMom

63

Jason code

direction(gold) :- see(gold).
direction(random) :- not see(gold).

+1find (gold) // long term goal
<- ?direction(A);
go(A);
Ifind(gold) .
tbattery(low) // reactivity
<- Icharge.

“Ichargelstate(started)] // goal meta-events
<- .suspend(find(gold)).

“lchargel[state(finished)]
<- .resume(find(gold)).

(GMom

Fibonacci calculator server — “java” version

Fibonaccer)= fib(40) Bob
-~
fib(3)
while true int fib(int n)
m = receiveMsg() if n <= 2
if m == fib(N) return 1
m.answer (fib(m.getArg(0))) else

return fib(n-1)+fib(n-2)

How long will Alice wait?

65

Fibonacci calculator server — Akka

(oMo

response time (ms)

70000

60000

50000

40000

30000

20000

10000

l ‘ Akké - Funct‘ion —_—
Akka - SubActor 4 threads
Akka - SubActor 100 threads ———

1 1 1 1 1 1 — | 1

5 10 15 20 25 30 35 40
i from fib(i)

a5

66

Fibonacci calculator agent — Jason version

<— fib(40) Bob
fib(3)

+7fib(1,1).

+7fib(2,1).

+?fib(N,F) <- ?fib(N-1,A); ?fib(N-2,B); F = A+B.
How long will Alice wait?

67

Fibonacci calculator agent — Jason version

response time (ms)

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

i from fib(i)

68

Jason x Prolog

» With the Jason extensions, nice separation of theoretical and

» BDI architecture allows

» long-term goals (goal-based behaviour)
» reacting to changes in a dynamic environment
» handling multiple foci of attention (concurrency)

» Acting on an environment and a higher-level conception of a
distributed system

69

Outline

Conclusions and wrap-up

70

Some

Shortfalls

IDEs and programming tools are still not anywhere near the level
of OO languages

Debugging is a serious issue — much more than “mind tracing” is
needed

Combination with organisational models is very recent — much
work still needed

Principles for using declarative goals in practical programming
problems still not “textbook”

Large applications and real-world experience much needed!

71

Some Trends

and encapsulation

MAS is hard: problems of concurrency, simulated
environments, emergent behaviour, mental attitudes

Logics for Agent Programming languages

Further work on combining with interaction, environments, and
organisations

We need to put everything together: rational agents,
environments, organisations, normative systems, reputation
systems, economically inspired techniques, etc.

Some

v

Related Projects |

Speech-act based communication
Joint work with Renata Vieira, Alvaro Moreira, and Mike
Wooldridge

Cooperative plan exchange
Joint work with Viviana Mascardi, Davide Ancona

Plan Patterns for Declarative Goals
Joint work with M.Wooldridge

Planning (Felipe Meneguzzi and Colleagues)
Web and Mobile Applications (Alessandro Ricci and Colleagues)

Belief Revision
Joint work with Natasha Alechina, Brian Logan, Mark Jago

73

Some

v

Related Projects Il

Reasoning
> Joint work with Renata Vieira, Alvaro Moreira
> . joint work with Tom Klapiscak

Goal-Plan Tree Problem (Thangarajah et al.)
Joint work with Tricia Shaw

Trust reasoning (ForTrust project)

Agent verification and model checking
Joint project with M.Fisher, M.Wooldridge, W .Visser, L.Dennis,
B.Farwer

74

Some Related Projects Il

» Environments, Organisation and Norms

» Normative environments

Join work with A.C.Rocha Costa and F.Okuyama
» MADeM integration (Francisco Grimaldo Moreno)
» Normative integration (Felipe Meneguzzi)

» More on jason.sourceforge.net, related projects

75

jason.sourceforge.net

Summary

» AgentSpeak

» Logic + BDI

» Agent programming language
> Jason

» AgentSpeak interpreter

Implements the operational semantics of AgentSpeak
Speech-act based communicaiton

Highly customisable

Useful tools

Open source

Open issues

VvyVvVYY

Further Resources

» http://jason.sourceforge.net

» R.H. Bordini, J.F. Hiibner, and
M. Wooldrige

John Wiley & Sons, 2007.

$WILEY

programming
multi-agent systems
n A, +C I

using °

Rafael H. Bordini
Jomi Fred Hiibner
Michael Wooldridge

7

http://jason.sourceforge.net

Further Resources

» http://jacamo.sourceforge.net

» O. Boissier, R.H. Bordini, J.F. Hiibner,
and A. Ricci

‘Multi-Agent Oriented
Programming ‘

MIT Press, 2020. o

78

http://jacamo.sourceforge.net

Bibliography |

@ Boissier, O., Bordini, R., Hiibner, J. F., and Ricci, A. (2020).

Multi-Agent Oriented Programming: Programming Multi-Agent Systems Using
JaCaMo.

The MIT Press.

Boissier, O., Bordini, R. H., Hiibner, J. F., Ricci, A., and Santi, A. (2011).
Multi-agent oriented programming with jacamo.
Science of Computer Programming, pages —.

Bordini, R. H., Hiibner, J. F., and Wooldrige, M. (2007).
Programming Multi-Agent Systems in AgentSpeak using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

d'Inverno, M., Kinny, D., Luck, M., and Wooldridge, M. (1997).
A formal specification of dmars.

In International Workshop on Agent Theories, Architectures, and Languages,
pages 155—176. Springer.

Georgeff, M. P. and Lansky, A. L. (1987).
Reactive reasoning and planning.
In AAAI, volume 87, pages 677—682.

79

Bibliography Il

@ Hiibner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009).

Instrumenting Multi-Agent Organisations with Organisational Artifacts and
Agents.

Journal of Autonomous Agents and Multi-Agent Systems.

Rao, A. S. (1996).
Agentspeak(l): Bdi agents speak out in a logical computable language.

In de Velde, W. V. and Perram, J. W., editors, MAAMAW, volume 1038 of
Lecture Notes in Computer Science, pages 42—55. Springer.

Rao, A. S., Georgeff, M. P., et al. (1995).
Bdi agents: From theory to practice.
In ICMAS, volume 95, pages 312—-3109.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009).
Environment programming in CArtAgO.

In Multi-Agent Programming: Languages, Platforms and Applications,Vol.2.
Springer.

80

	Agent Abstractions
	Agent Dynamics
	Other language features
	Namespaces
	Strong Negation
	Prolog-like Rules
	Plan Annotations & Concurrent Plans
	Declarative Goal Patterns
	Meta Programming

	Integrating A & A dimensions
	Agent Management Infrastructure in JaCaMo
	Comparison with other paradigms
	Conclusions and wrap-up

