
Multi-Agent Programming
– Programming Autonomous Agents –

O. Boissier

Univ. Clermont Auvergne, IMT Mines Saint-Etienne, LIMOS UMR CNRS 6158, France

CPS2 M1 – Fall 2021

http://www.emse.fr/~boissier/

JaCaMo meta-model

dynamic relation

composition

act

communicate

participate

Agent

Agent

GoalBelief

Action

Organisation

Group Scheme

Role Goal

Organisation

Norm

regulateco
un

t-a
s

em
po

we
r

perceive

Concept

Dimension

coordinate

Environment

Workspace

Operation

Environment

Artifact

Observable
property

Interaction

*

*

*

*

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

*

*

*

Plan
*

*

Manual

Observable
event

Event
*

*

*

*

*

Organisation

Group Scheme

Role Goal

Organisation

Norm

Organisation

Group Scheme

Role

Goal

Organisation

Norm

**

Mission *

*

Link

Simplified view on JaCaMo meta-model [Boissier et al., 2020, Boissier et al., 2011]

A seamless integration of three dimensions based on Jason [Bordini et al., 2007],

Cartago [Ricci et al., 2009], Moise [Hübner et al., 2009] meta-models

2

Agent dimension

composition
Agent

Agent

GoalBelief

Action

Concept

Dimension

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Event
*

*

*

*

*

Simplified Conceptual View (Jason meta-model [Bordini et al., 2007]):

Simple Agent Program:

example bob.asl example carl.asl

3

Agent in JaCaMo: Jason

The foundational language for Jason is AgentSpeak
I Originally proposed by Rao [Rao, 1996]
I Programming language for BDI agents
I Elegant notation, based on logic programming
I Inspired by PRS [Georgeff and Lansky, 1987], dMARS

[d’Inverno et al., 1997], and BDI Logics [Rao et al., 1995]
I Abstract programming language aimed at theoretical results

4

Jason
A practical implementation of a variant of AgentSpeak

I Jason implements the operational semantics of a variant of
AgentSpeak

I Has various extensions aimed at a more practical programming
language (e.g. definition of the MAS, communication, ...)

I Highly customised to simplify extension and experimentation
I Developed by Jomi F. Hübner, Rafael H. Bordini, and others

5

Outline

Agent Abstractions

Agent Dynamics

Other language features

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

6

Main Language Constructs

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how
Actions can be internal, external, communicative or
organisational ones

Events: happen as consequence to changes in the agent’s beliefs
or goals

Intentions: plans instantiated to achieve some goal

Note: identifiers starting in upper case denote variables

7

Main Language Constructs and Runtime Structures

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how
Actions can be internal, external, communicative or
organisational ones

Runtime structures:

Events: happen as consequence to changes in the agent’s beliefs
or goals

Intentions: plans instantiated to achieve some goal

Note: identifiers starting in upper case denote variables

7

(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X).// I

beliefs: prolog like (First Order Logic)

8

(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X).// I

beliefs: prolog like (First Order Logic)
desires: prolog like, with ! prefix

8

(BDI & Jason) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X).// I

beliefs: prolog like (First Order Logic)
desires: prolog like, with ! prefix
plans:
I define when a desire becomes an intention ; deliberate
I how it is satisfied
I are used for practical reasoning ; means-end

8

(BDI & Jason) Hello World – agent bob
desires from perception – options

+happy(bob) <- !say(hello).

+!say(X) : not today(monday) <- .print(X).

9

(BDI & Jason) Hello World – agent bob
source of beliefs

+happy(bob)[source(A)]
: someone_who_knows_me_very_well(A)
<- !say(hello).

+!say(X) : not today(monday) <- .print(X).

10

(BDI & Jason) Hello World – agent bob
plan selection

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X).

11

(BDI & Jason) Hello World – agent bob
intention revision

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X); !say(X).

-happy(H)
: .my_name(H)
<- .drop_intention(say(hello)).

12

(BDI & Jason) Hello World – agent bob
intention revision

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X); !say(X).

-happy(H)
: .my_name(H)
<- .drop_intention(say(hello)).

12

(BDI & Jason) Hello World – agent bob
intention revision / Features

I we can have several intentions based on the same plans

; running concurrently
I long term goal running

; reaction meanwhile!

13

Beliefs representation
Agent Abstractions

Syntax

Beliefs are represented by annotated literals of first order logic

functor(term1, ..., termn)[annot1, ..., annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].

~lier(bob)[source(self)].

14

Goals representation
Agent Abstractions

Syntax

Goals are represented as beliefs with a prefix:
I ! to denote achievement goal (goal to do)
I ? to denote test goal (goal to know)

Example (Initial goal of agent Tom)

!write(book).

15

Plans representation
Agent Abstractions

Syntax

An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:
I triggering_event: events that the plan is meant to handle
I context: situations in which the plan can be used
I body: course of action to be used to handle the event if the

context is believed to be true at the time a plan is being chosen to
handle the event

16

Plans representation – Triggering events
Agent Abstractions

I Events happen as consequence to changes in the agent’s beliefs or
goals

I An agent reacts to events by executing plans

Syntax

I belief addition: +b
I belief deletion: -b
I achievement-goal addition: +!g
I achievement-goal deletion: -!g
I test-goal addition: +?g
I test-goal deletion): -?g

17

Plans representation – Context
Agent Abstractions

Context is a boolean expression with the following operators:

Syntax

I Boolean operators
& (and)
| (or)

not (not)
= (unification)

>, >= (relational)
<, <= (relational)

== (equals)
\== (different)

I Arithmetic operators
+ (sum)
- (subtraction)
* (multiply)
/ (divide)

div (divide – integer)
mod (remainder)

** (power)

18

Plans representation – Body
Agent Abstractions

A plan body may contain:
I Belief operators

+ (new belief)
- (dispose belief)

-+ (update belief)

I Goal operators
! (new achievement sub-goal)
? (new test sub-goal)
!! (new achievement goal)

I External actions defined from artifact operations (see course on
Agent Working Environment)

I Internal actions
I Unlike actions, internal actions do not change the environment
I Encapsulate code to be executed as part of the agent reasoning

cycle
I Internal actions can be used for invoking legacy code

I Constraints
19

Internal Actions
Agent Abstractions

I Internal actions can be defined by the user in Java
libname.action_name(...)

I Standard (pre-defined) internal actions in standard library (no
library name):
I .print(term1,term2, . . .)
I .union(list1, list2, list3)
I .my_name(var)
I .send(ag,perf ,literal)
I .intend(literal)
I .drop_intention(literal)

I Many others available for: printing, sorting, list/string operations,
manipulating the beliefs/annotations/plan library, creating agents,
waiting/generating events, etc.

20

Plans representation
Agent Abstractions

Example

+rain : time_to_leave(T) & clock.now(H) & H >= T
<- !g1; // new sub-goal

!!g2; // new goal

?b(X); // new test goal

+b1(T-H); // add mental note

-b2(T-H); // remove mental note

-+b3(T*H); // update mental note

jia.get(X); // internal action

X > 10; // constraint to carry on

close(door);// external action

!g3[hard_deadline(3000)]. // goal with deadline

21

Plans representation
Agent Abstractions

Example

+green_patch(Rock)[source(percept)]
: not battery_charge(low)
<- ?location(Rock,Coordinates);

!at(Coordinates);
!examine(Rock).

+!at(Coords)
: not at(Coords) & safe_path(Coords)
<- move_towards(Coords);

!at(Coords).
+!at(Coords)

: not at(Coords) & not safe_path(Coords)
<- ...

+!at(Coords) : at(Coords).

22

Outline

Agent Abstractions

Agent Dynamics

Other language features

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

23

Agent dynamics
Agent Dynamics

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

24

Basic Reasoning cycle
runtime interpreter

I perceive the environment and update belief base
I process new messages
I select event
I select relevant plans
I select applicable plans
I create/update intention
I select intention to execute
I execute one step of the selected intention

25

Basic Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

26

Basic Reasoning Cycle
Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

26

I machine perception

I belief revison

I knowledge

representation

I communication,

argumentation

I trust

I social power

26

Basic Reasoning Cycle
Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

27

I planning

I reasoning

I decision theoretic

techniques

I learning

(reinforcement)

26

Basic Reasoning Cycle
Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

28

I intention

reconsideration

I scheduling

I action theories

26

Beliefs dynamics
Agent Dynamics

Internal reasoning

The plan operators + and - can be used to add and remove beliefs
annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice)[source(self)]

-lier(john); // removes lier(john)[source(self)]

Perception (from the environment)

Beliefs are automatically updated accordingly to the perception of the
agent (annotated with source(percept))

27

Beliefs dynamics
Agent Dynamics

Communication (from other agents)

When an agent receives a tell (resp. untell) message, the content is a
new belief (annotated with the sender of the message) (resp. belief
corresponding to the content is deleted)

.send(tom,tell,lier(alice)); // sent by bob

// adds lier(alice)[source(bob)] in Tom’s Belief Base

...

.send(tom,untell,lier(alice)); // sent by bob

// removes lier(alice)[source(bob)] from Tom’s Belief Base

28

Goals dynamics
Agent Dynamics

Internal reasoning

The plan operators !, !! and ? are used to add a new goal (annotated
with source(self))

...
// adds new achievement goal !write(book)[source(self)]

!write(book);

// adds new test goal ?publisher(P)[source(self)]

?publisher(P);
...

29

Goals dynamics
Agent Dynamics

Communication of achievement goal

When an agent receives an achieve message, the content is a new
achievement goal (annotated with the sender of the message)

.send(tom,achieve,write(book)); // sent by Bob

// adds new goal write(book)[source(bob)] for Tom

.send(tom,unachieve,write(book)); // sent by Bob

// removes goal write(book)[source(bob)] for Tom

Communication of test goal

When an agent receives an askOne or askAll message, the content is a
new test goal (annotated with the sender of the message)

.send(tom,askOne,published(P),Answer); // sent by Bob

// adds new goal ?publisher(P)[source(bob)] for Tom

// the response of Tom will unify with Answer

30

Plans dynamics
Agent Dynamics

The plans that form the plan library of the agent come from
I plans added (resp. removed) dynamically by intentions in internal

reasoning:
I .add_plan (resp. .remove_plan)

I plans added (resp. removed) by communication:
I tellHow (resp. untellHow)

Example

.send(bob, askHow, +!goto(_,_)[source(_)], ListOfPlans);

...

.plan_label(Plan,hp); // get a plans based on a plan’s label

.send(A,tellHow,Plan);

.send(bob,tellHow,"+!start : true <- .println(ḧello)̈.").

31

A note about “Control”

Agents can control (manipulate) their own (and influence the others)
I beliefs
I goals
I plan

By doing so they control their behaviour

The developer provides initial values of these elements and thus also
influence the behaviour of the agent

32

Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

33

Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

34

Namespace
Other language features

I Abstract container in the mind of agent, created to hold a logical
grouping of beliefs, goals, events, plans and actions

I Identified by a name, used to prefix (using ::) the elements
belonging to it:

ns1::color(box,blue) // color is in namespace ns1
I Two types:

I Global namespace: any element associated with the global
namespace can be consulted, changed by any other namespace

I Local namespace: elements can only be used by the namespace
I ; possibility of sharing elements by means of a common global

namespace
I Namespace can be defined by:

I module program of beliefs, goals and plans (i.e. a usual agent
program).
Every agent has one initial module (its initial program) into which
other modules can be loaded

I associating observable properties or actions of artifacts

35

Modules and Namespaces
Other language features

Namespaces & Modularity

51
36

Modules and Namespaces
Other language featuresNamespaces & Modularity

–include(”initiator.asl”, pc)˝

–include(”initiator.asl”, tv)˝

!pc::startCNP(fix(pc)).

!tv::startCNP(fix(tv)).

+pc::winner(X)

¡- .print(X).

52
37

Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

38

Strong Negation
Other language features

+!leave(home)
: ~raining
<- open(curtains); ...

+!leave(home)
: not raining & not ~raining
<- .send(mum,askOne,raining,Answer,3000); ...

39

Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

40

Prolog-like Rules in the Belief Base
Other language features

tall(X) :-
woman(X) & height(X, H) & H > 1.70
|
man(X) & height(X, H) & H > 1.80.

likely_color(Obj,C) :-
colour(Obj,C)[degOfCert(D1)] &
not (colour(Obj,_)[degOfCert(D2)] & D2 > D1) &
not ~colour(C,B).

41

Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

42

Plan Annotations
Other language features

I Like beliefs, plans can also have annotations, which go in the plan
label

I Annotations contain meta-level information for the plan, which
selection functions can take into consideration

I The annotations in an intended plan instance can be changed
dynamically (e.g. to change intention priorities)

I There are some pre-defined plan annotations, e.g. to force a
breakpoint at that plan or to make the whole plan execute
atomically

Example (an annotated plan)

@myPlan[chance_of_success(0.3), usual_payoff(0.9),
any_other_property]

+!g(X) : c(t) <- a(X).

43

Concurrent Plans
Other language features

I fork-join-and operator |&|

+!ga <- ...; !gb;
+!gb <- ...; (!g1 |&| !g2); a1; ... // fork-join-and
// a1 will be executed when !g2 and !g1 will be achieved
I fork-join-xor operator |||

+!ga <- ...; !gb;
+!gb <- ...; (!g1 ||| !g2); a1; ... // fork-join-xor
// a1 will be executed after !g2 or !g1 are achieved
// when one of !g2 or !g1 is achieved the other is dropped

-!g1 : true <- !g1. // in case of some failure
-!g2 : true <- !g2. // in case of some failure
+g1 : true <- .succeed_goal(g1).
+g2 : true <- .succeed_goal(g2).
+f1 : true <- .fail_goal(g1). // f1 drop condition for g1
+f2 : true <- .fail_goal(g2). // f2 drop condition for g2

44

Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

45

Declarative Goal Patterns: Achievement goal
Other language features

Example (Example)

+!g : g <- true. // g declarative goal

+!g : c1 <- p1; ?g.
+!g : c2 <- p2; ?g.
...
+!g : cn <- pn; ?g.
+g : true <- .succeed_goal(g).

46

Backtracking Declarative Goal Patterns
Other language features

Example (Example)

+!g : g <- true. // g declarative goal

+!g : c1 <- p1; ?g.
+!g : c2 <- p2; ?g.
...
+!g : cn <- pn; ?g.
+g : true <- .succeed_goal(g).
-!g : true <- !!g.

47

Exclusive Backtracking Declarative Goal Pattern
Other language features

Example (Example)

+!g : g <- true. // g declarative goal

+!g : not p(1,g) & c1 <- +p(1,g); p1; ?g.
+!g : not p(2,g) & c2 <- +p(2,g); p2; ?g.
...
+!g : not p(n,g) & cn <- +p(n,g); pn; ?g.
-?g : true <- !!g.
+g : true <- .abolish(p(_,g); .succeed_goal(g).

48

Failure Handling: Contingency Plans
Other language features

Example (Example)

!g1 // initial goal

+!g1 : true <- !g2(X); .print(“end g1 “,X).
+!g2 : true <- !g3(X); .print(“end g2 “,X).
+!g3 : true <- !g4(X); .print(“end g3 “,X).
+!g4 : true <- !g5(X); .print(“end g4 “,X).
+!g5 : true <- .fail.

-!g3(X) : true <- .print(“in g3 failure”).

49

Failure Handling: Contingency Plans
Other language features

Example (Example)

!g1 // initial goal

+!g1 : true <- !g2(X); .print(“end g1 “,X).
+!g2 : true <- !g3(X); .print(“end g2 “,X).
+!g3 : true <- !g4(X); .print(“end g3 “,X).
+!g4 : true <- !g5(X); .print(“end g4 “,X).
+!g5 : true <- .fail.

-!g3(X) : true <- .print(“in g3 failure”).
saying: in g3 failure
saying: end g2 failure
saying: end g1 failure

49

Failure Handling: Contingency Plans
Other language features

Example (blind commitment to g)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g : true <- !g. // keep trying
-!g : true <- !g. // in case of some failure

+g : true <- .succeed_goal(g).

50

Failure Handling: Contingency Plans
Other language features

Example (single minded commitment)

+!g : g. // g is a declarative goal

+!g : ... <- a1; ?g.
+!g : ... <- a2; ?g.
+!g : ... <- a3; ?g.

+!g : true <- !g. // keep trying
-!g : true <- !g. // in case of some failure

+g : true <- .succeed_goal(g).
+f : true <- .fail_goal(g). // f is the drop
condition for g

51

Failure Handling: Compiler pre-processing – directives
Other language features

Example (single minded commitment)

{ begin smc(g,f)}
+!g : ... <- a1.
+!g : ... <- a2.
+!g : ... <- a3.

{ end }

52

Outline

Agent Abstractions

Agent Dynamics

Other language features
Namespaces
Strong Negation
Prolog-like Rules
Plan Annotations & Concurrent Plans
Declarative Goal Patterns
Meta Programming

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

53

Meta Programming
Other language features

Example (an agent that asks for plans on demand)

-!G[error(no_relevant)] : teacher(T)
<- .send(T, askHow, { +!G }, Plans);

.add_plan(Plans);
!G.

in the event of a failure to achieve any goal G due to no relevant
plan, asks a teacher for plans to achieve G and then try G again

I The failure event is annotated with the error type, line, source, ...
error(no_relevant) means no plan in the agent’s plan library to
achieve G

I { +!G } is the syntax to enclose triggers/plans as terms

54

Outline

Agent Abstractions

Agent Dynamics

Other language features

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

55

Integrating A & A dimensions

dynamic relation

composition

Agent

Agent

GoalBelief

Action

Concept DimensionInteraction

communicate

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Agent

Agent

GoalBelief

Action

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Agent

Agent

GoalBelief

Action

*

*

*

Plan
*

*

Event
*

*

*

*

*

56

Communicative Actions

Use of the internal action .send with performative verbs and
corresponding content:
I tell, untell: to share beliefs,
I achieve, unachieve: to delegate achievement goal,
I askOne, askAll: to delegate test goal,
I askHow: to request plans,
I tellHow, untellHow: to share plans.

57

Outline

Agent Abstractions

Agent Dynamics

Other language features

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

58

Jason Customisations

I Agent class customisation:
selectMessage, selectEvent, selectOption, selectIntention, buf, brf,
...

I Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

I Belief base customisation:
add, remove, contains, ...
I Example available with Jason: persistent belief base (in text files, in

data bases, ...)

59

Outline

Agent Abstractions

Agent Dynamics

Other language features

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

60

Jason × Java

Consider a very simple robot with two goals:
I when a piece of gold is seen, go to it
I when battery is low, go charge it

61

Java code – go to gold

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));

}
while (seeGold) {

a = selectDirection();

doAction(go(a));

} } } }

62

Java code – charge battery

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));
if (lowBattery) charge();

}
while (seeGold) {

a = selectDirection ();
if (lowBattery) charge();
doAction(go(a));
if (lowBattery) charge();

} } } }

63

Jason code

direction(gold) :- see(gold).
direction(random) :- not see(gold).

+!find(gold) // long term goal
<- ?direction(A);

go(A);
!find(gold).

+battery(low) // reactivity
<- !charge.

ˆ!charge[state(started)] // goal meta-events
<- .suspend(find(gold)).

ˆ!charge[state(finished)]
<- .resume(find(gold)).

64

Fibonacci calculator server – “java” versionFibonacci calculator server – “java” version

Fibonaccer Bob

Alice

fib(40)

fib(3)

while true int fib(int n)

m = receiveMsg() if n ¡= 2

if m == fib(N) return 1

m.answer(fib(m.getArg(0))) else

... return fib(n-1)+fib(n-2)

How long will Alice wait?

5965

Fibonacci calculator server – AkkaFibonacci calculator server – Akka

60

66

Fibonacci calculator agent – Jason versionFibonacci calculator agent – version Jason

Fibonaccer Bob

Alice

fib(40)

fib(3)

+?fib(1,1).

+?fib(2,1).

+?fib(N,F) ¡- ?fib(N-1,A); ?fib(N-2,B); F = A+B.

How long will Alice wait?

61
67

Fibonacci calculator agent – Jason versionFibonacci calculator server – Jason

6268

Jason × Prolog

I With the Jason extensions, nice separation of theoretical and
practical reasoning

I BDI architecture allows
I long-term goals (goal-based behaviour)
I reacting to changes in a dynamic environment
I handling multiple foci of attention (concurrency)

I Acting on an environment and a higher-level conception of a
distributed system

69

Outline

Agent Abstractions

Agent Dynamics

Other language features

Integrating A & A dimensions

Agent Management Infrastructure in JaCaMo

Comparison with other paradigms

Conclusions and wrap-up

70

Some Shortfalls

I IDEs and programming tools are still not anywhere near the level
of OO languages

I Debugging is a serious issue — much more than “mind tracing” is
needed

I Combination with organisational models is very recent — much
work still needed

I Principles for using declarative goals in practical programming
problems still not “textbook”

I Large applications and real-world experience much needed!

71

Some Trends

I Modularity and encapsulation
I Debugging MAS is hard: problems of concurrency, simulated

environments, emergent behaviour, mental attitudes
I Logics for Agent Programming languages
I Further work on combining with interaction, environments, and

organisations
I We need to put everything together: rational agents,

environments, organisations, normative systems, reputation
systems, economically inspired techniques, etc.

; Multi-Agent Programming

72

Some Related Projects I

I Speech-act based communication
Joint work with Renata Vieira, Álvaro Moreira, and Mike
Wooldridge

I Cooperative plan exchange
Joint work with Viviana Mascardi, Davide Ancona

I Plan Patterns for Declarative Goals
Joint work with M.Wooldridge

I Planning (Felipe Meneguzzi and Colleagues)
I Web and Mobile Applications (Alessandro Ricci and Colleagues)
I Belief Revision

Joint work with Natasha Alechina, Brian Logan, Mark Jago

73

Some Related Projects II

I Ontological Reasoning
I Joint work with Renata Vieira, Álvaro Moreira
I JASDL: joint work with Tom Klapiscak

I Goal-Plan Tree Problem (Thangarajah et al.)
Joint work with Tricia Shaw

I Trust reasoning (ForTrust project)
I Agent verification and model checking

Joint project with M.Fisher, M.Wooldridge, W.Visser, L.Dennis,
B.Farwer

74

Some Related Projects III

I Environments, Organisation and Norms
I Normative environments

Join work with A.C.Rocha Costa and F.Okuyama
I MADeM integration (Francisco Grimaldo Moreno)
I Normative integration (Felipe Meneguzzi)

I More on jason.sourceforge.net, related projects

75

jason.sourceforge.net

Summary

I AgentSpeak
I Logic + BDI
I Agent programming language

I Jason
I AgentSpeak interpreter
I Implements the operational semantics of AgentSpeak
I Speech-act based communicaiton
I Highly customisable
I Useful tools
I Open source
I Open issues

76

Further Resources

I http://jason.sourceforge.net

I R.H. Bordini, J.F. Hübner, and
M. Wooldrige
Programming Multi-Agent Systems in
AgentSpeak using Jason
John Wiley & Sons, 2007.

77

http://jason.sourceforge.net

Further Resources

I http://jacamo.sourceforge.net

I O. Boissier, R.H. Bordini, J.F. Hübner,
and A. Ricci
Multi-Agent Oriented Programming:
Programming Multi-Agent Systems
Using JaCaMo
MIT Press, 2020.

78

http://jacamo.sourceforge.net

Bibliography I
Boissier, O., Bordini, R., Hübner, J. F., and Ricci, A. (2020).
Multi-Agent Oriented Programming: Programming Multi-Agent Systems Using
JaCaMo.
The MIT Press.

Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A. (2011).
Multi-agent oriented programming with jacamo.
Science of Computer Programming, pages –.

Bordini, R. H., Hübner, J. F., and Wooldrige, M. (2007).
Programming Multi-Agent Systems in AgentSpeak using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

d’Inverno, M., Kinny, D., Luck, M., and Wooldridge, M. (1997).
A formal specification of dmars.
In International Workshop on Agent Theories, Architectures, and Languages,
pages 155–176. Springer.

Georgeff, M. P. and Lansky, A. L. (1987).
Reactive reasoning and planning.
In AAAI, volume 87, pages 677–682.

79

Bibliography II

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009).
Instrumenting Multi-Agent Organisations with Organisational Artifacts and
Agents.
Journal of Autonomous Agents and Multi-Agent Systems.

Rao, A. S. (1996).
Agentspeak(l): Bdi agents speak out in a logical computable language.
In de Velde, W. V. and Perram, J. W., editors, MAAMAW, volume 1038 of
Lecture Notes in Computer Science, pages 42–55. Springer.

Rao, A. S., Georgeff, M. P., et al. (1995).
Bdi agents: From theory to practice.
In ICMAS, volume 95, pages 312–319.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009).
Environment programming in CArtAgO.
In Multi-Agent Programming: Languages,Platforms and Applications,Vol.2.
Springer.

80

	Agent Abstractions
	Agent Dynamics
	Other language features
	Namespaces
	Strong Negation
	Prolog-like Rules
	Plan Annotations & Concurrent Plans
	Declarative Goal Patterns
	Meta Programming

	Integrating A & A dimensions
	Agent Management Infrastructure in JaCaMo
	Comparison with other paradigms
	Conclusions and wrap-up

