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Abstract

AMPLIA is a multi-agent intelligent learning environment designed to support training of

diagnostic reasoning and modelling of domains with complex and uncertain knowledge. AMPLIA

focuses on the medical area. It is a system that deals with uncertainty under the Bayesian network

approach, where learner-modelling tasks will consist of creating a Bayesian network for a problem

the system will present. The construction of a network involves qualitative and quantitative aspects.

The qualitative part concerns the network topology, that is, causal relations among the domain

variables. After it is ready, the quantitative part is specified. It is composed of the distribution of

conditional probability of the variables represented. A negotiation process (managed by an intelligent

MediatorAgent) will treat the differences of topology and probability distribution between the model

the learner built and the one built-in in the system. That negotiation process occurs between the

agents that represent the expert knowledge domain (DomainAgent) and the agent that represents the

learner knowledge (LearnerAgent).
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1. Introduction

People simplify things when they want to solve problems and take decisions in real life,

where information is partial (not complete) or approximated (not exact). For that kind of

problem, we only get solutions full of uncertainties. A physician can diagnose a disease

based on some symptoms, but the diagnosis will be only a hypothesis, which can be wrong.

A mistake may come from the incomplete knowledge about the pathology in question,

from determinant symptoms not detected yet, due to the initial evolution phase of the

disease, or from the lack of complementary tests. However, this diagnosis has higher

reliability than a simple guess, because the physician who did it has a notion on the value of

the formulated model. Currently, a way of handling the uncertainty mentioned above is to

offer physicians medical software based on probabilistic reasoning. These systems may be

used in teaching/learning processes and in the physician’s daily practice.

In this paper, we introduce AMPLIA. The proposal here is to present a multi-agent

intelligent learning environment according to the following three criteria. First, the learner

elaborates his/her own knowledge model and the system will continuously ask him/her

about his/her actions and decisions. Second, feedback and additional information is

available all the time. Third, if necessary a negotiation process among the agents and

the learner will take place as a way of making him/her review his model.

For the purpose of medical education, medical students should practice two skills:

hypothetical model construction and diagnostic reasoning, because both are problem-

solving tasks. Firstly, apart from the diagnosis, the learner should have an opportunity to

actively construct models of diseases, including the diseases possible causes, associated

symptoms, and, finally, evaluate the model application. This way, the learner can acquire

and use knowledge necessary in diagnostic reasoning. Secondly, the learner should have

the opportunity to actively apply strategies while performing diagnostic reasoning.

AMPLIA is a multi-agent computational environment aimed at supporting learning

using a constructivist approach to perform diagnostic reasoning. It is not fully developed

yet, once it was initially designed only to allow knowledge modelling for decision support

systems construction. Now it has received a larger function: to put available a tool that

allows the learner to learn how to build a model through probabilistic networks. AMPLIA

compares its domain built-in model against the one the learner has built, and if they are

different, the environment starts a negotiation process, based on pedagogical strategies, in

order to induce the learner to review his/her model.

The learner may further specify, evaluate, and review the model at qualitative and

quantitative level, under AMPLIA advice. Training of strategies for diagnosis will also be

supported qualitatively (i.e. which information is necessary in order to support an

hypothesis or differentiate between two different ones?) and quantitatively (i.e. how does

information gathered affect a diagnostic hypothesis? Which is the most important

information to be acquired to go on?).

Besides the general criteria of this project, we chose Bayesian network approach to deal

with uncertain knowledge because it is mathematically principled. Bayesian networks have

been widely used all over the world to model uncertain domains [2]. Uncertainty is

represented by probability and the basic inference is the probabilistic reasoning, that is, the

probability of one or more variables assuming specific values giving the available
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evidence. Another important reason for choosing the Bayesian network approach is its two-

fold feature that enables qualitatively and quantitatively domain modelling. The qualitative

side is represented by the set of variables and their causal relationship. The expert can

easily construct this qualitative domain model, using a Directed Acyclic Graph. The

quantitative side expresses the strength of this causal relationship. It is represented by

conditional probability distributions. Our group has opted for probabilistic networks to

represent knowledge since 1996 [24]. This work resulted in a Ph.D. thesis in 2000 that

brought out the multiple sectioned influence diagram formalism.

We follow the hypothesis that a physician engaged in medical diagnosis implicitly

performs probabilistic reasoning. The physician’s practice corresponds to take full

advantage of the probabilistic relationship between the variables present in a Bayesian

network that models the medical domain of interest. Reviews of published case studies in

the domain of environmental medicine support this hypothesis [2,12,17,32,37]. More

generally, there is empirical evidence that the probabilistic reasoning, when supported by

Bayesian networks, corresponds closely to the human reasoning pattern [33].

Definition (Bayesian network). A Bayesian network is a direct acyclic graph where

nodes are random variables, and arcs represent direct probabilistic dependence relations

among the nodes they connect. The strength of the relationship of Xi with pa(Xi), its

parents (nodes with arcs that arrive in Xi), is given by P(Xi|pa(Xi)), the conditional

probability distribution of Xi given its parents. The P(X1, . . ., Xn) is the joint probability

distribution of all variables. If pa(Xi) is an empty set, P(Xi|pa(Xi)) is reduced to the

unconditional distribution of Xi.

The systems mentioned below are related to our work. They represent the application

knowledge domain through Bayesian networks. Concerning the teaching area we can cite

CAPIT, a normative constraint-based intelligent tutoring system (ITS) that uses Bayesian

networks for long-term student modelling and decision theory to select the next tutorial

action [26]. Pathfinder, for lymphatic disease diagnosis, is an example of one of those

systems that have success, both in professional practice and physicians training, [17,32].

Munin used to get a preliminary diagnosis of muscles and nerves diseases [2]. Child [12]

was developed to support physicians of the London Great Ormond Street (GOS) Hospital

making distance diagnosis of congenital cardiac diseases in new-borns. As an example of

teaching environments using Bayesian networks based on learner’s model, we cite the

expert system for the mechanics physics, ANDES [15]. ANDES aim is to know learner’s

intentions and knowledge in order to help him/her in problem-solving tasks. Table 1

presents more recent examples of decision support systems that make use of Bayesian

networks for medical diagnosis. Notice that some of the systems analysed are composed

only of knowledge bases (like Community-Acquired Pneumonia and MammoNet [22]),

while others (like Internist/QMR [27] and AMPLIA) are knowledge bases coupled with

Bayesian inference engines.

In the examples cited above, the goal is to find the problem solution. The underlying

educational strategy is based on how a solution involves an explanation, the identification

of the problem’s reason leads to the proposal of its solution. This educational strategy

attends those students who like to integrate theory and practice to solve real problems. With
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Table 1

Systems that make use of Bayesian networks for medical diagnosis

Criteria Community-Acquired

Pneumonia [4]

MammoNet [22] Internist/QMR [27] Medicus [11,28] AMPLIAa

Qualitative

development

Variables extracted from

retrospective study with 32,662

patients; interviews with

medical experts

Medical literature

reviews; statistic medical

databases; expert

interviews

Cases abstracted

from SAMb database

Built-in knowledge

acquisition facilities

Medical literature

reviews; expert interviews

Quantitative

development

Machine learning algorithm

for Bayesian networks

– Cases abstracted

from SAM database

Built-in knowledge

acquisition facilities

Interview with experts

Accuracy testing

method

Case-control study with

real patients

Case-control study

with patients from

mammographic atlas

Sample from SAM cases NA Case-control study

with real patientsc

Metrics for testing Sensibility, sensitivity, ROC

curve, positive predictive value

Sensibility, sensitivity,

ROC curve, positive

predictive value

Wilcoxon signed-rank

test

NA Sensibility, sensitivity,

ROC curve, positive

predictive valued

Pedagogic tool No No No No Yes

Diagnostic purpose Yes (knowledge base only) Yes (knowledge base only) Yes Yes Yes

Agent oriented Third party inference engine Third party

inference engine

No No Yes

NA: not applicable; (–) information not available.
a Four networks in database.
b Scientific American Medicine Continuing Medical Education Service.
c Only Heart Failure network validated by case-control study.
d Only Heart Failure network with calculated metrics.
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a more pedagogical approach, the teacher can enlarge the learner’s learning field by

inquiring him/her in such a manner that he/she has to answer not only ‘‘how’’, but also

‘‘what’’, ‘‘why’’ and ‘‘what if’’ [6]. This strategy forces the learner to interact more with

the environment and moves the focus of studies on Intelligent Learning Environments

(ILE) [3] and Multi-Agents Systems (MAS) [25].

The migration from ILE to multi-agent ILE is not a simple task. In fact, the Artificial

Intelligence Research Group at UFRGS has been carrying out research on teaching–

learning environments since 1990, through the development of ITS [35,39,43]. Recently,

this group has employed MAS approach to develop multi-agent ILE [1,7,9,16,39,42]. The

group’s intention of developing learning environments with emphasis on pedagogical

approach had motivated this move.

Through the adoption of MAS paradigm and under the knowledge representation

viewpoint, it was possible to develop more powerful systems, for example, student model

and ITS both based on Belief, Desire, and Intention (BDI) architectures [8,30]. The use of

Distributed Artificial Intelligence (DAI) techniques enabled both the development of CPU

intensive teaching–learning systems and the component reuse [40].

The project herein described is the result of a partnership between a private enterprise,

ARQ Systems, the Informatics Institute at the Federal University of Rio Grande do Sul

(UFRGS), and the Computer Science Department at the University of Brasilia (UnB).

As it follows, Section 2 describes AMPLIA environment. Section 3 presents AMPLIA

architecture, Section 4 brings some examples of AMPLIA use, and Section 5 brings

conclusions and future works.

2. The AMPLIA environment

AMPLIA is a multi-agent1 computational environment aimed at supporting learning using

a constructivist approach. We will focus on the medical reasoning to describe AMPLIA. The

development of this environment is in accordance with the physician process of technical

education and specialisation, which, in general, happens through the following activities:

medical appointments, classes attendance, and round sessions. Medical students and

instructors discuss real cases and current topics of their specialities in round sessions. They

also use some classes to discuss papers previously handed out by the teacher and read by

learners. The medical student can use AMPLIA as a complementary tool to ease his/her

technical skill development on formulated diagnoses, at his/her own pace.

In short, the process of formulating a definite medical diagnosis can be seen as composed

of the following steps: medical interview, Current Disease History (CDH), formulation of a

differential diagnosis, formulation of a preliminary diagnosis, and definite diagnostic

formulation. If suitable, after the formulation of a preliminary diagnosis and before the

definite diagnostic formulation, the physician can review the technical literature and

request complementary lab tests. In medical interviews, the physician interviews the

patient to know the history of his/her last diseases. To obtain the CDH, the physician

1 An agent is a program that works autonomously for a while, interacts with other agents and services, lives in

an environment, and performs a task in the name of a person or an organisation [29].
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questions the patient about what his/her main complaint is. The physician visually examines

the patient in order to determine his/her condition, searching for signs on the body, and notes

down the symptoms the patient mentioned. Then, the physician examines the patient

physically, oriented by signs and symptoms already detected. With all these information,

the physician makes the differential diagnosis, that is, selects a set of pathologies (diseases)

compatible with the data collected, and tries to get new results that can exclude some

hypothetical pathology. Through reducing the set of hypothetical pathologies, it is possible to

establish the preliminary diagnosis, that is, to determine the most probable pathology. If there

is need of confirming the preliminary diagnosis, the physician requests supplementary

investigations. While the physician waits for the lab results, he/she can review the technical

literature about the pathology he/she suspects the patient is suffering from. The lab tests

analysis can confirm the preliminary diagnosis, making it definitive, or supply new

information for a new preliminary diagnostic formulation.

The use of probabilistic systems to support this medical procedure can make easier the

differential, preliminary, and definitive diagnostic stages. It can reduce the need for

technical literature review and complementary lab tests but does not reduce the definitive

diagnostic quality. Therefore, it can improve the medical diagnostic quality, reducing both

the time needed to make a diagnosis formulation and costs. This reduction of costs is

associated to the expectation of a change in the physician’s behaviour. We expect that, if the

physician has a probabilistic model that helps him/her with the diagnose process then the

lab tests requests will decrease. Lab tests will be requested only in cases where it is not

possible to get the definitive diagnosis based on interviews and analysis of the hypothetical

disease the physician is considering possible, having in mind the patient’s main complaint.

AMPLIA is composed of three agents: LearnerAgent, DomainAgent, and MediatorA-

gent. This section describes the AMPLIA major functions not focusing on agents’ details,

while Section 3 presents the AMPLIA multi-agent architecture. The DomainAgent

represents the expert knowledge domain and the LearnerAgent represents the learner

knowledge. The learner will learn with the AMPLIA support by building probabilistic

models, and evaluating diagnostic hypothesis. If the model the learner has built is different

from the built-in model, the system’s MediatorAgent motivates the leaner to review his/her

model qualitatively or quantitatively. The MediatorAgent guides the learner based on

pedagogical strategies.

2.1. AMPLIA: phase I—model construction

2.1.1. Qualitative review of the model construction

The learner constructs a qualitative model using a Directed Acyclic Graph (DAG). After

the initial formulation of the model, it has to be checked on a qualitative level, represented

by the causal relationships of domain variables. The DomainAgent (see Section 3), at first,

verifies if the network is acyclic and connected. Secondly, it verifies if the learner

considered all the main variables, and if the dependence and independence implied by

the DAG correspond to the expert net. Formally, conditional independence is described by

the d-separation criterion presented in [33]. The variables are categorised as findings or

diagnosis variables. The findings represent deterministic values to variables obtained

during the medical interview process (e.g. signs, symptoms, CDH) or complementary lab
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tests, etc. The diagnosis variables represent diagnostic hypothesis. The acquiring of

findings changes the diagnosis variables’ probabilities.

The findings are of the type trigger, essential, complementary, or excluder. Trigger

finding singles out the diagnosis as a potential solution to the problem, when present.

Essential finding must be present to assure the diagnosis identification. Complementary

finding might be present to increase the probability of the diagnosis. Excluder finding

indicates the diagnosis is improbable (i.e. it has a very low probability), if present. Of

course, some diagnosis variables can be considered finding variables for other diagnosis

variables if the primes are potential cause for the lasts. The DomainAgent will use this

classification together with the domain built-in model to inform the MediatorAgent about

the differences between the learner solution and the domain model. The MediatorAgent

selects a pedagogical strategy from a database in order to mediate a negotiation process

between the learner and the DomainAgent, as described in Section 3.

2.1.2. Quantitative review of the model construction

The quantification of the qualitative part of the network implies evaluating all condi-

tional probability distributions of all variables represented. This codification of probabil-

ities tends to be not the hardest but certainly the longest task in the modelling process.

Despite sometimes, in medical domains, there is probabilistic data in abundance in

literature; this kind of information can be seldom used directly in the probability

distributions assessment. Sometimes, medical literature presents probabilities such as

the frequency of symptoms given the occurrence of a disease, but almost never the

frequency of such symptoms in the absence of that disease. Furthermore, medical literature

does not concern with questions like: what is the probability of a pathological condition to

determine the appearance of some symptom or lab finding? What we usually find are

statements like ‘‘rare finding’’ or ‘‘common finding’’. Otherwise, if literature cannot

provide reliable probabilistic information, estimates can be obtained from statistical data

analysis or using machine learning techniques [18,27,32,34]. Experience shows, however,

that even when there is good availability of data, they very rarely contribute to the

quantification efforts [23]. In medical statistical data, for example, intermediate patho-

physiological states of disease are not typically registered. Consequently, domain experts

need to evaluate a great number of probabilities.

The decision analysis offers several techniques for eliciting arbitrary probabilities [31].

The simplest technique is to use a numerical probability scale. A probability scale is either

a vertical or a horizontal line with endpoints 0 and 100%, and some few anchors, like 25, 50

and 75%. A second technique, used in conjunction with the one above, is the frequency

technique. The expert is given the suggestion of envisioning 100 cases with some particular

context. For example, the domain expert, a cardiologist, is asked to imagine a population

with 100 patients with cardiomegaly (enlarged heart) and to determine how many of them

present Chagas disease, as the cause of this pathology. Unfortunately, experience has

shown that the use of the probability scale, together with the frequency method, provides

experts little to go by and it may result in highly inaccurate probabilities assessments [13].

A natural evolution of these techniques above is due to [14]. They present a new

numerical and verbal scale, with only verbal questions and no math notations (see Fig. 1).

The marks on this scale are pairs of numerical divisions of probability (0, 15, 25, 50, 75, 85,
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and 100%) and commonly used expert expressions (impossible, improbable, uncertain, 50-

50, expected, probable, and certain).

The researchers have studied how close is the common sense meaning of these expressions

and their numerical counterparts approaching. Besides that, they realised that verbal questions

were necessary, since many experts were uncomfortable with mathematics probability

notations. Another fact noticed was that, the more specialised the experts were in a particular

topic, the more prone they were to reason in terms of words. The verbal anchors in the scale

then helped them to determine which probability they actually had in mind (Fig. 1). This

method also groups together the questions related to the same probability distribution, so that

the domain expert can consider them simultaneously. Experts are then encouraged to assess

probabilities they are most certain, usually the extremes, and probabilities with unique causal

influences, and then to interpolate the remaining probabilities.

Using the van der Gaag et al. [14] modified probability scale idea, AMPLIA offers the

learner a graphical editor that allows him to assess the needed probabilities. The last

AMPLIA advice in this phase is to verify whether the assessed probability distributions the

learner realises are compatible with the probability axioms.

2.2. AMPLIA: phase 2—diagnostic hypothesis evaluation

The diagnostic hypothesis evaluation starts after the construction model phase. It

consists of the evidence input (i.e. findings) and in their propagation into the learner’s

Bayesian network. The SEAMED2 tool supports both of them. The evidence propagation

Fig. 1. The modified probability scale proposed by van der Gaag and Renooij.

2 SEAMED [10] was the beginning of AMPLIA, and now it is incorporated as a computational tool of this

extended challenge. SEAMED presents a graphical interface designed to ease the construction of decision-

making support applications in any medical field. In order to analyse a specific case, the application user should

enter the available evidence. The application propagates this evidence through the other random variables and

updates their conditional probabilities giving the available evidence entered into the system.
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yields the update of all the probability distributions inherent to such Bayesian network.

AMPLIA uses the junction tree method to propagate evidence and to derive the marginal

probability distribution (marginal for short) for each diagnosis variables of interest from

the updated probability distributions [20]. The marginals are probability distributions

conditioned to all the findings entered in the Bayesian network. Into the medical domain

context, findings represent information gathered during the interview process, lab test

results, etc. that the physician use to guide his/her reasoning during the process of

diagnostic hypothesis evaluation. Findings can make some diagnostic hypothesis more

probable and others less probable. The SEAMED represents this fact by increasing or

decreasing some diagnostic hypothesis probability. The purpose of AMPLIA, during

this phase is to help the development of the physician learner’s skills in the diagnosis

process, mainly in the differential diagnosis. AMPLIA supports it qualitatively and

quantitatively.

2.2.1. Qualitative diagnostic hypothesis evaluation

The AMPLIA qualitative diagnostic evaluation helps the learner to answer questions

like:

� Which are the most probable diagnostic hypotheses?

� Which is the most referential finding in order to give support to accept or reject a

particular diagnostic hypothesis?

� What do I have to do in order to diagnose a specific disease, for example, hepatitis?

� Which are the essential findings for a specific diagnosis?

� Which findings are excluders (i.e. improbable) in a specific diagnostic hypothesis?

The learner has the choice of asking AMPLIA to present a textual explanation that

describes a selected diagnosis and one report, which has intrinsic information about

changes in the dynamic relationship between the variables as consequence of the evidence

propagation. This information is included in the AMPLIA built-in model by a domain

expert.

2.2.2. Quantitative diagnostic hypothesis evaluation

AMPLIA support for quantitative diagnostic hypothesis evaluation includes advice in

questions like:

� How much does a certain piece of evidence (finding) contribute to the best diagnostic

hypothesis?

� How can a particular finding gathering affect the learner’s preliminary diagnosis?

� What evidence would be necessary in order to achieve a certain probability level for a

diagnostic hypothesis?

In addition, AMPLIA provides sensitivity analysis features for studying how variables’

probability distribution assessments affect the results of the model built by the learner,

especially on a variable of interest. In short, for example, how a diagnostic hypothesis is

affected by several finding’s probability distribution assessments. A sensitivity analysis, in

which a single assessment is varied, is termed an one-way sensitivity analysis. In a two-way

sensitivity analysis of a Bayesian network, two probability assessments vary simultaneously.
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This analysis reveals the joint effect of variation on a probability of interest. AMPLIA

supports both of them.

3. The AMPLIA architecture

Our AI Group has accomplished research in cognitive agents [8,30], using logical model

of the agent’s mental states to represent its beliefs, desires, and intentions. In the present

project, we have been investigating the use of Bayesian networks in the agent’s beliefs

modelling and mental states to guide the negotiation process. Three cognitive agents

(LearnerAgent, MediatorAgent, and DomainAgent), two databases (expert knowledge

built-in model database and pedagogical strategy database) and the interface module

compose the AMPLIA architecture, illustrated in Fig. 2.

The LearnerAgent represents the student’s beliefs in that domain, the confidence degree

this learner has on the network model he/she has built. It also includes a steady part with

basic information about the learner. The LearnerAgent elaborates and updates the student’s

model. From now on, we will use learner and student interchangeably.

The MediatorAgent makes decisions about when interfering during the learner’s net-

work model construction process, besides it can act by learner’s request. It will select the

most appropriate pedagogical strategy to query and help the learner.

The DomainAgent pairs the network built by the learner with the built-in model. The

result is sent to the MediatorAgent to co-ordinate the negotiation process.

The built-in model database contains the networks built by the knowledge expert, the

nodes classification (trigger, essential, complementary, or excluder), explanation resources

and brief texts on the problem.

The pedagogical strategy database stores and put available strategies according to the

learner’s model (see Table 2). The negotiation process uses pedagogical strategies.

Fig. 2. The AMPLIA architecture.
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The interface makes possible the learner’s interaction. The student can access the brief

text, the SEAMED tools, the menus for variable choices, the option to transmit his/her

confidence degree in the network, and the option to save his/her network in a database folder.

3.1. Communication among agents

AMPLIA agents communicate over a FIPA-OS platform. The Foundation for Intelligent

Physical Agents (FIPA) has put forward an agent communication language (ACL), based on

the Speech Act Theory. FIPA assumes the existence of an agent management system, not part

of the language, and abstracts the low-level communication details. Currently inform, request,

query-if and query-ref acts are being used through FIPA’s Request and Query Interaction

Protocols. Bayesian networks are represented, for communication purposes, in a XML-based

format (XBN) and FIPA-SL0 is used as content language for communicative act messages. To

establish communication between agents there is a need for a common frame of reference or

shared ontology. The shared ontology determines how particular message content is to be

interpreted. Below are presented the types of messages exchanged among agents:

� LearnerAgent’s beliefs are modelled in a Bayesian network with a graphical editor,

through which the learner builds hypothetical network models and diagnostics reasoning.

Table 2

MediatorAgent’s negotiation strategies

Strategy Network

model

Learner’s

confidence

level

(1) Your diagnostic model is complete, matching the expert’s network model Complete High

(2) Click on the nodes or causal relationship where your confidence is lower Moderate

(3) Click on the nodes or causal relationship where your confidence is higher Low

(4) Consider the following information: (. . .) and think about which nodes

are necessary to incorporate findings

Feasible High

(2) Click on the nodes or causal relationship where your confidence is lower Moderate

(3) Click on the nodes or causal relationship where your confidence is higher Low

(4) Consider the following information: (. . .) and think about which nodes

are necessary to incorporate findings

Incomplete High

(2) Click on the nodes or causal relationship where your confidence is lower Moderate

(3) Click on the nodes or causal relationship where your confidence is higher Low

(4) Consider the following information: (. . .) and think about which nodes

are necessary to incorporate findings

Incorrect High

(2) Click on the nodes or causal relationship where your confidence is lower Moderate

(3) Click on the nodes or causal relationship where your confidence is higher Low

(5) Your diagnostic model is not according to Bayesian network structures.

Please, review the network concepts

Unfeasible High

(5) Your diagnostic model is not according to Bayesian network structures.

Please, review the network concepts

Moderate

(5) Your diagnostic model is not according to Bayesian network structures.

Please, review the network concepts

Low
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LearnerAgent sends request messages to DomainAgent with its beliefs asking for a

review. The abstract syntax notation for action expressions carried by this message

content type is:

Review-beliefsðLearnerAgent GoalÞ ¼ fXBN LearnerAgentg (1)

� DomainAgent has beliefs on medical domain knowledge depicted through Bayesian

networks. It puts available to the student, knowledge domain and explanation resources

enough to aid the learning process. DomainAgents send inform messages to the

LearnerAgent with the case study to be modelled, and the list of variables the learner

can use in the construction of the hypothetical model. Providing variables that are

sensitive to the case study context will help to maintain common ontology between

agents during the learning process. As the DomainAgent receives the learner’s network

model, it starts an action (program) that reviews the learner’s belief, by comparing the

expert network model against the student’s. After identifying conflicts on the result of

this comparison, DomainAgent sends inform messages to MediatorAgent presenting

these conflict points. Abstract syntax notations for action expressions carried by case-

study and conflict message types are, respectively:

Case studyðLearnerAgent GoalÞ ¼ fText case study; Variables listg (2)

ConflictsðLearnerAgent GoalÞ
¼ fClassification model; Conflict points; Argumentsg (3)

� MediatorAgent mediates the interaction between DomainAgent and LearnerAgent

aiming at helping in the conflicts solving process. After receiving the DomainAgent

message, MediatorAgent sends query messages to LearnerAgent requesting information

on the confidence level about the hypothetical domain built. Based on this information

and on pedagogical strategies in use, MediatorAgent sends to LearnerAgent arguments

(essentially simple inform messages) that will motivate the learner to review beliefs and

modify his/her actions. Abstract syntax notations for action expressions carried by

confidence discovery and strategy selection message types are, respectively:

ConfidenceðLearnerAgent GoalÞ ¼ fConfidence levelg (4)

StrategyðLearnerAgent GoalÞ ¼ fXBN model; Confidence level; Argumentsg
(5)

Communication dialogue among agents will go on as far as the LearnerAgent wants to

review his/her model. This can make him/her reach a network model identical to the

DomainAgent’s or another feasible network model, although not identical to the Domai-

nAgent’s.

3.2. The negotiation process

In a multi-agent learning environment, where the learner is an active subject in the

learning process, co-operation can be taken for granted. Co-operation must be planned for
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and achieved through communication and a sort of negotiation. Negotiation is based on

argumentation.

Argumentation theory is an interdisciplinary field that calls the attention of philosophers,

logicians, linguists, and speech acts researchers, for example. Much of the research

accomplished in this area is not formal, but some organisation has been seen since the

1980s. Our approach to argumentation tries to explore possible relations between

argumentation and learning, taking into account the point of view of researchers of

cognitive sciences and education. A central mean of knowledge construction is reasoning,

and the result of this reasoning is an argument, structure that consists of a conclusion and of

a set of reasons that support it [38].

As well as AMPLIA, the empirical work of Baker [5] explored argumentation functions

in collaborative problem-solving. According to his work, argumentation has three main

functions: it works as an activator in the search for information, as a filter of flaw proposals

and as a provider of interactive pressure to co-elaborate ideas. Another empirical approach

of argumentation is Veerman’s [41]. This work reports a study on collaborative learning

through argumentation. According to Veerman, collaborative learning allows students to

negotiate different perspectives by externalising and negotiating them. Through argu-

mentation they can build and re-build knowledge with relation to other learning objectives.

Veerman’s empirical interest is on the relation between argumentation and production of

constructivist activities.

In AMPLIA, the student expresses his/her argumentation through the Bayesian network

modelling. Rolf and Magnusson [36] assert that the practice and teaching, and the

reasoning and argumentation teaching are adequate to the use of diagrams—‘‘a large

number of textbooks present arguments in the form of boxes and arrows’’ [36]. We agree

with this idea; this way the learner can build a domain model through a graphic editor

where arguments are composed of nodes and links among them. Rolf classifies software

that uses graphs to express arguments in three levels. This classification takes into

consideration the calculation that has been used. The Belvedere system, for example,

does not have any calculus, thus it is at the first level; Athenas and Reason!Able systems are

in an intermediate level, containing some numeric designation and rules to filter the best

arguments. These systems do not have a tutor or mediator as an aid in the learning task.

AMPLIA is at the third level which is compounded by systems that contains advanced

theory-based capacities for calculations. The AMPLIA calculus is based on expected

utility and Bayesian probabilities.

The negotiation process follows an interaction/conversation protocol that is shown by the

finite state machine of Fig. 3. In the initial state, the DomainAgent presents a case study to the

learner. In the second state, the learner models his/her diagnostic hypothesis from the study of

cases the DomainAgent has put available. Yet, in the second state, the LearnerAgent sends its

model to the DomainAgent in order to be assessed. This evaluation results in a classification

of points where the student model differs from the DomainAgent’s.

The classification is according to the importance of each finding of the model (see

Section 2.1.1). In the third state, the student evaluates the message received from the

MediatorAgent and makes his arguments through alterations accomplished in his/her

diagnostic modelling. In this state, the LearnerAgent can also decide to abandon the

learning process (because it feels satisfied or not). In the fourth stage, the MediatorAgent,
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based on the result of the DomainAgent analysis and on the level of confidence provided by

LearnerAgent triggers the best pedagogic strategy (Table 2).

The AMPLIA negotiation process happens through a dynamic choice of strategies. The

parameters considered are linked to the learner’s actions and to the assessment the

DomainAgent carries out. In this negotiation process, only the student has the option

of abandoning the interaction. However, when arguments the student used are adequate for

a solution, the MediatorAgent may come to accept the student’s modelling, even if it is

different from the DomainAgent’s.

Negotiation is based on the student’s own learning process. Presupposing that the student’s

ability of absorbing/considering all the findings of a diagnostic modelling be affected by his/

her experience as a professional, the ‘intuitive’ negotiation process allows to change other

agent’s thoughts/ideas through argumentation (using a Bayesian graphic editor).

In a negotiation process, one must consider a confront space where there are several

possibilities for the solution of an impasse. This happens during a diagnostic hypothesis

modelling. That is, a diagnostic can be identified by different hypothesis (causal relation),

however, the trigger and essential findings should be considered and the complementary

findings would only help to better confirm the diagnosis, as well as the presence/absence of

abstract nodes (see example of Section 4).

The negotiation process can be seen also like a game, where the agents are able of

misleading the opponent. Therefore, in AMPLIA, the DomainAgent can confuse the

learner including an excluder node in the variable list (see example of Section 4).

In this context, in what moment the DomainAgent could ‘‘yield’’ to the LearnerAgent’s

opinions? When although the student modelling is not identical to the DomainAgent’s it

solves the case-study problem.

The LearnerAgent could yield to the DomainAgent opinions when it realises the flaws on

its modelling, considering (or not) strategies chosen by the mediator, as we can see in the

following example.

� DomainAgent proposes a problem.

� LearnerAgent models and submits to evaluation.

Fig. 3. Interaction protocol.
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� The result of this evaluation is sent to the MediatorAgent as specific comments for each

region of the network. The DomainAgent informs also the main critical points or the

most important ones (utility function).

� The MediatorAgent asks the student to tell his/her confidence level about the graph

region.

� Based on these information, the MediatorAgent chooses the right strategy (which the

student can consider or not).

� In the next phase of the process, the MediatorAgent has an impression about the student

(if he/she considered or not the strategy presented) and also, based on this information,

the MediatorAgent chooses again a new strategy (now taking into account also the

modifications the student has done).

AMPLIA follows a constructivist line, intuitively the MediatorAgent should be con-

descending with the student’s position, trying not to be aggressive with the student, trying

to consider what the student knows more to help him/her to advance on his/her hypothesis.

The idea is then to maximise the student and expert’s utilities. The MediatorAgent can

soothe the conflicts that happen between both agents (DomainAgent and LearnerAgent), in

a non-aggressive way, using pedagogical strategies that meet the constructivist objectives

of the project.

AMPLIA pedagogical proposal follows the constructivist approach. In this approach,

the student is an active subject in the learning process and the teacher undertakes the role

of mediator to motivate this learner, proposing strategies for the reflection on the

solution process. So, the AMPLIA mediation process is carried out by an intelligent

MediatorAgent, which uses the pedagogical strategies during the learning process.

Among the pedagogical strategies used in a constructivist environment, we cite:

proposals of problems that involve hypotheses formulation, comparison and/or exclu-

sion, data categorisation and models reformulation, searching for regularities and data

reorganisation for effective actions. We also allude to the Kolb’s learning cycle, which

Belhot [6] discusses posing the following key-questions ‘‘what?, how?, what if?, and

why?’’ in the knowledge approach, providing a formative (theoretical), prescriptive

(practical), constructive (reflective) and prospective (critical) learning. Therefore, when

using AMPLIA, the learner must be motivated to learn also the ‘‘why’’ and not only

‘‘how’’ to solve an issue.

In Kolb’s schema, motivation is a key element in learning, and emotions have an

important role when we talk about motivating the student [7]. Different from that,

AMPLIA proposes that the student makes a self-evaluation and informs his confidence

degree, which will be the variable considered by the MediatorAgent. From this

pedagogical viewpoint, mistake and doubt are important moments for self-evaluation

and reflection, therefore, the learner himself will determine his studies pace. Thus, the

MediatorAgent intervention and the strategy used will always question the student’s

doubts and assertions.

MediatorAgent starts the negotiation process after the learner’s beliefs review. This

review is carried out by procedures that promote qualitative and quantitative assessment of

learner’s solution, classifying models as feasible, unfeasible, complete, incomplete, or

incorrect.
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Unfeasible network model is identified as a network that does not satisfy the definition of

a Bayesian network. The model is not an oriented acyclic graph, and/or presents a

disconnected network, and/or the probability distributions performed by the learner are

not compatible with the probability axioms. This process of error identification involves a

number of algorithms that will not be dealt in the present paper.

Incorrect network model is the network whose model is conceptually incorrect. That

happens, for example, in the presence of an excluder node that should be in the model to

refute the diagnosis, while its presence confirms it.

Incomplete network model is that network that presents the lack of some nodes or

relations considered important (trigger, essential, complementary), whether they are

diagnosis or findings. It is almost impossible to reach a correct diagnostic hypothesis

evaluation in this case, even if the model is a complete and well-formed Bayesian network.

Feasible network model is a network different from the built-in model but it satisfies the

case study proposed to the learner. The probabilistic (in)dependence relations expressed in

a feasible model are equivalent to probabilistic relations of the built-in model, that is,

causal relations represented in both models are equivalent. The DomainAgent will identify

this classification through the qualitative and quantitative evaluation of the learner’s

models. In the qualitative evaluation, DomainAgent must identify in the student’s model

important variables (trigger, essential, complementary), whether they are diagnostic or

findings.

Complete network model is identical to the model the expert built. The causal relation-

ships of domain variables and the conditional probability distributions of all variables are

identical to those of the built-in model.

The DomainAgent classifies the student model network and sends a message containing

the conflict points to the MediatorAgent, together with a list of explanations that will be

useful in the negotiation process. The MediatorAgent proposes that the learner makes a

self-evaluation and informs his/her confidence degree in the model he/she has built. The

confidence degree could be High, Moderate or Low. The LearnerAgent chooses the

confidence degree and informs it to the MediatorAgent. The MediatorAgent sends to

the LearnerAgent a message with arguments based on the model classification given by

DomainAgent and the learner’s confidence degree. This message will motivate the learner

to review his/her beliefs, helping him/her to decide which will be the next actions. A

generic example of message is:

Your diagnostic model is (complete, feasible, unfeasible, incomplete) and your

confidence is (high, moderate, low), (followed by the strategy itself).Table 2 presents

strategies that could be used by the MediatorAgent.

Now, MediatorAgent will wait for the learner’s next action which could be:

� Ask for additional information about nodes and/or causal relationship where the

LearnerAgent has a low confidence degree.

� Ask for a review on Bayesian network concepts.

� Keep on with model changes to send it to the DomainAgent later.

� Leave the negotiation process.

� See expert’s network model.
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The negotiation process is an interactive method where the MediatorAgent will be

continuously motivating the LearnerAgent to reach its objectives, which are: hypothetical

model construction and diagnostic reasoning development. Over repeated encounters,

MediatorAgent may analyse the student’s patterns of behaviour to establish an analogy to

the teacher’s role in constructive approach. This may influence the evaluation of argu-

ments, as we can see in situations such as an impasse. By observing the reactions to the

arguments, the MediatorAgent can update and correct LearnerAgent’s model, thus refining

its planning and argumentation knowledge.

An example of an impasse situation is when the student persists in the same error, even

with all the initial motivational arguments provided. A new strategy should then be

employed. For example, let us imagine that a student made an unfeasible model (the

network presents cycles). The system, using a specific strategy, informs that the network

structure is not adequate to Bayesian network concepts. However, this student insists in the

mistake, and can not identify the problem, that could be a cyclic network, a disconnected

network, or a network with incorrect probability distribution. With time, analysing the

student’s behaviour patterns, the MediatorAgent can take the decision of sending an

argument right to the problem the student is facing, for example, ‘‘Your network presents

cycles’’.

3.3. Implementation aspects

At this moment, we have already implemented the following modules in AMPLIA’s

environment:

� Graphic interface editor the learner uses to create his/her network (developed with

DELPHI 6.0 programming language).

� The probabilistic inference engine (in DELPHI 6.0).

� The LearnerAgent modelled through Bayesian networks.

� The domain module composed of the domain agent plus a medical case database with

four different case studies and their corresponding diagnostic Bayesian networks (nets

are modelled using XML).

� The agent communication mechanism (FIPA-OS).

� AMPLIA’s main interface under development in Java.

To make possible for the system to execute over FIPA-OS platform the components that

were not developed using Java, are currently being agentified using CORBA.

4. An example: Rheumatic Fever

An example of AMPLIA’s SEAMED module in action is as follows. When accessing

AMPLIA for the first time, the learner will fill a form with some data such as name,

password, etc. aiming at creating a folder at the learner’s database. In the next log-ins,

she/he will only inform password. After identification, the LearnerAgent selects a

medical case study from the DomainAgent database. A case study is represented by a
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textual diagnostic investigation problem, possibly enriched with illustrated graphical

and/or sound files (see Fig. 4). The DomainAgent compares each case study with a built-

in model managed.3

After this case-study presentation, the learner can start the construction model phase

with the support of Bayesian network graphical editor. The DomainAgent presents a list

with all nodes requested plus nodes not related to this current investigation to the learner.

The learner is then encouraged to develop a new Bayesian network selecting all nodes he/

she feels appropriate to the case, from the list nodes. The learner can elaborate both the

qualitative and the quantitative parts of the model. Also, he needs to identify all finding

variables and all diagnosis variables presented in the case and assesses the initial

conditional probability distribution of the entire variables set.

Fig. 5 presents the built-in model previously developed by an expert for the example

above. Note that it is only visible to learner under request.

Notice that the diagnostic node ‘‘Rheumatic Fever’’ represents the definitive diagnosis of

this case. Rheumatic Fever is a systemic, autoimmune illness due to cross-reactivity with

b-hemolytic streptococci of Group A. After a throat infection, for example, antibodies

developed by the immune system against the bacteria (streptococcus) cross-react with the

very own tissues of the patient affected (like joint tissues, and heart valves). In the

susceptible 2% of the population, there may be permanent damage to heart valves and the

risk of subsequent endocarditis (inflammation of the tissue that covers the walls of the

heart) is increased. It usually follows a latent period of 2–4 weeks. Peak incidence: 5–15

years.

As stated previously, nodes are categorised as diagnostic and/or findings. Finding nodes

are also sub-classified as trigger, essential, complementary, and excluder.

As an example of a trigger node (see Fig. 6), notice the ‘‘painless swellings over bony

prominences’’.

A positive evidence for this node is enough to indicate a ‘‘true’’ posteriori distribution of

‘‘Subcutaneous nodules’’ (its sole parent—a diagnostic AND finding node). ‘‘Recent

Streptococcal Infection’’, ‘‘Major Criteria’’, and ‘‘Minor Criteria’’ represent essential

nodes in this network (see Fig. 7).

These nodes are classified as such because they are needed for the final diagnosis of

‘‘Rheumatic Fever’’. According to the revised Jones criteria, a diagnosis of Rheumatic

Fever may only be established by the presence of evidence of previous streptococcal

infection (represented by ‘‘Recent Streptococcal Infection’’ node) plus two Major Criteria

(represented by ‘‘TwoOrMore’’ state of node ‘‘Major Criteria’’) or one major (state

‘‘OnlyOne’’ of this same node), and two Minor Criteria (corresponding to state ‘‘TwoOr-

More’’ of ‘‘Minor Criteria’’ node).

Major and Minor Criteria, presented in Table 3, are symbolised by nodes. Notice that the

nodes in Table 3 are classified as complementary, because they help to establish beliefs on

other nodes (in this case, the essential nodes Minor and Major Criteria).

3 Notice that the built-in network developed by the expert makes use of abstract nodes (like major and minor

criteria) commonly seen in medical textbooks. It is important to state that the main purpose of AMPLIA is to

serve as a pedagogical aid system (and not as precise diagnostic tool). Therefore, certain aspects of the subject

being studied (like Rheumatic Fever and also Jones Criteria) should appear.
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Fig. 4. A medical case study.
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Fig. 5. The domain built-in model developed by an expert.

Table 3

Major and Minor Criteria

Nodes Presented by patient?

Major Criteria

Carditis (heart inflammation) Yes

Migratory polyarthritis (pain that ‘‘moves’’ from joint to joint) Yes

Sydenham’s chorea (involuntary movements of extremities) No

Subcutaneous nodules (swellings under skin) Yes

Erythema marginatum (pink rash in skin) No

Minor Criteria

Raised ESR or C-reactive protein (unspecific signs

of inflammation in body)

Yes

Arthralgia (tender joint) No (because evidence was already

marked for Migratory polyarthritis)

Fever Yes

History of previous Rheumatic Fever No

Prolonged PR interval on ECG Yes
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Finally, as an example of excluder node (see Fig. 8), note the entity ‘‘Rash occurring on

face’’. The DomainAgent included this node to confuse the learner trickily. ‘‘Erythema

Marginatum’’, this pink rash never occurs on face! In case of a positive evidence of this

node, the posteriori probability distribution of ‘‘Erythema Marginatum’’ node would need

to be negative.

Fig. 6. A network with a trigger node.

Fig. 7. A network with essential nodes.
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Fig. 8. A network with an excluder node.

Fig. 9. Entering evidences.
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After the learner finishes the network, he begins to enter the evidences from the textual

diagnostic investigation, according to his own interpretation. Fig. 9 presents AMPLIA’S

interface and shows this phase.

The LearnerAgent sends the qualitative part of the network (i.e. causal relationships) of

the learners’ network, together with the a priori and a posteriori probabilities distribution to

the DomainAgent. In turn, the DomainAgent starts to ‘‘compare’’ these probabilities and

causal relationships with the built-in model. Fig. 10 shows a hypothetical learner’s

network.

‘‘Rash occurring on face’’ has a correct relationship with ‘‘Erythema Marginatum’’.

After inference tests, however, the DomainAgent discovers that both ‘‘Erythema Margin-

atum’’ and its excluder node ‘‘Rash occurring on face’’ have positive posteriori values. This

fact triggers the DomainAgent to inform this error to the MediatorAgent. The Media-

torAgent recognises what kind of error it is dealing with and explains to the learner (from

the pedagogic strategy database) that ‘‘Rash occurring on face’’ is either not related to

‘‘Erythema Marginatum’’ or has a negative impact on this node. The MediatorAgent then

provides the learner with information regarding the causative agents of ‘‘Erythema

Marginatum’’ (notice that other nodes are also missing in the learner’s network), what

it is and to which it is related. This diagnostic reasoning is directed to the nodes classified as

‘‘diagnostic’’ (like ‘‘Erythema Marginatum’’). Otherwise, the system would not know

Fig. 10. A hypothetical learner’s network.
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whether to focus on ‘‘Erythema Marginatum’’ (a diagnostic node) or ‘‘Rash occurring on

face’’ (a finding node).

Besides developing the domain network that resolves the medical investigation problem,

the expert is also responsible for a brief argumentation concerning each node. The

MediatorAgent eventually uses this data for pedagogical purposes. See Table 4 to observe

the real data the MediatorAgent makes use during the learning process.

More examples of hypothetical learner models and their respective classifications are

presented below.

Example 1. According to the classification that Table 2 presents, the hypothetical learner

network seen in Fig. 11 falls under the feasible learner model. Although essential nodes

like ‘‘Major Criteria’’, ‘‘Minor Criteria’’ and ‘‘Recent Streptococcal Infection’’ are

missing, the learner managed to include all nodes present in the case. After performance

analysis made by the DomainAgent, this network was able to correctly diagnose ‘‘Rheu-

matic Fever’’. Despite its limited use (i.e. the network could only be (safely) used to this

case), the learner correctly synthesised the important aspects of this investigation chal-

lenge. See Fig. 11.

This example shows a common problem observed among expert and learner models: the

difference in the presence/absence of abstract nodes. Both ‘‘Major Criteria’’ and ‘‘Minor

Criteria’’ are logic entities. They summarise the presence/absence of their parent nodes.

The MediatorAgent would discourage the learner, and the environment would lose

Fig. 11. A feasible network.
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Table 4

Partial view of a real pedagogical argumentation table

Node Argumentation Classification I Classification II

Rheumatic Fever This node is important because it holds the key to the solution of this case study. Trigger Diagnostic

Minor Criteria This node is a logical node that summarises the presence/absence of unspecific

signs or lab test results that correlate to this case.

Essential Diagnostic

Major Criteria This node is a logical node that summarises the presence/absence of important

findings you must observe in order to establish a correct diagnosis for this case

(tip: create different states to express the presence of one, two or more findings present).

Essential Diagnostic

Recent Streptococcal

Infection

This node is a logical node that summarises the presence/absence of parent nodes

that make evident the history of a Recent Streptococcal Infection. Remember

that, to establish a correct diagnosis for this case, either one of this two situations

must be fulfilled.

Essential Diagnostic

Recent Streptococcal Infection plus two (or more) Major Criteria.

Recent Streptococcal Infection plus (at least) one major criterion and two

(or more) Minor Criteria.

Carditis The heart is the site of the most characteristic and consequential involvement,

and all its layers—endocardium, myocardium, and pericardium—may be involved.

This generalised involvement gives rise to the term rheumatic pancarditis. The

most characteristic and specific pattern of rheumatic inflammation is found in

the myocardial Aschoff body, a submiliary granuloma. This lesion, when present

in its classic form, is generally considered to be pathognomonic of . . . (by now you

should have an understanding of what this investigation problem is all about).

Complementary Diagnostic

Pink rash with clear

centres and

serpiginous margins

This finding should remind you of a major criterion called . . ., that is present in

2–10% of patients with . . ..

Complementary Finding

Rash occurring on face Perhaps your network is not working properly because this node excludes the

possibility of a patient having . . ., a major criterion of . . ..

Excluder Finding
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credibility in case only negative interventions were to be brought up. To identify situations

like that, the DomainAgent searches for all missing nodes. If parent nodes of those missing

are, nevertheless, present in the learner network (which is the case depicted in Fig. 11), the

DomainAgent verifies (through extensive sensitive analysis) whether meaningful prob-

abilistic impacts are still observed in each diagnostic node in the learner network. Because

all diagnostic nodes ‘‘Rheumatic Fever’’, ‘‘Migratory polyarthritis’’, ‘‘Carditis’’, and

‘‘Subcutaneous nodules’’ (present in case) were correctly diagnosed, the MediatorAgent

assumes, at first, that the learner falls under the ‘‘higher learner confidence’’ classification.

To confirm this, the learner is inquired about his confidence in his model and only then he is

inquired for the missing nodes. Fig. 12 displays an example of this kind of intervention.

It is important to note that complaints are obtained from the domain model’s nodes

database. Each entry listed represents a different (missing) node in the learner network (in

this case, nodes ‘‘sudden, aimless, irregular movements’’, ‘‘Sydenham’s chorea’’, ‘‘Migra-

tory Algic Pattern’’, ‘‘pink rash with clear centres and serpiginous margins’’, ‘‘Rash

occurring in the trunk and/or proximal part of the extremities’’ and ‘‘Muscle Weakness’’,

respectively). These additional clues do not exhaust all missing nodes in the learner’s

model so that he/she does not get overwhelmed with too much information.

Example 2. Fig. 13 represents a complete model network because it includes all nodes

necessary to establish a precise diagnose of ‘‘Rheumatic Fever’’. All possible Major and

Minor Criteria are represented. Not only the topology is correct but also the parameter

analysis confirms that the probabilities entered approximate to those of the expert model.

Example 3. Fig. 14 shows another learner model network classified as incomplete. Note

that the diagnosis ‘‘Rheumatic Fever’’ cannot be established because some important

nodes are missing. The learner is not considering ‘‘Sydenham’s chorea’’ as a possible

major criterion, although not present in case, this sign should always be sought and the

oblivious of ‘‘Prolonged PR interval on ECG’’ as a possible finding that could be counted

as a minor criterion (which is present in patient’s ECG result).

Fig. 12. A MediatorAgent intervention.
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Fig. 13. A complete model network.

Fig. 14. An incomplete model network.
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Example 4. Fig. 15 is an example of an unfeasible model network. Notice that the learner

is basing his ‘‘Rheumatic Fever’’ diagnosis on two Major Criteria: (1) ‘‘Migratory

polyarthritis’’, presented by patient; and (2) Erythema marginatum, not present in case,

besides, he is misusing ‘‘Rash occurring on face’’ as a confirmation node for ‘‘Erythema

marginatum’’. As seen on Table 3, ‘‘Rash occurring on face’’ is an excluder finding that

rules out this major diagnostic criterion.

5. Conclusion and future work

The intelligent probabilistic learning environment, AMPLIA, is designed to support the

construction of explanatory models in complex, uncertain domains, and to support

diagnostic reasoning. Our example application domains are from medicine. Unlike most

existing systems based on the Bayesian network approach, AMPLIA is designed as a

medical diagnostic learning tool. The learner may construct explanatory models; evaluate

their consequences qualitatively and quantitatively. The learner may also state diagnostic

hypotheses and receive feedback about the usefulness of diagnostic investigations.

With the use of probabilistic reasoning technology it is possible to improve the product

performance. Currently, the probabilistic reasoning has a wide acceptance all over the

Fig. 15. An unfeasible model network.
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world, because it is considered an efficient and correct way of representing and dealing

with uncertainty. The junction tree technique is the current state-of-the-art of probabilistic

inference.

Concerning applications of AMPLIA, one of our co-operations is aimed at generating

realistic models with the help of case data. These models will serve for diagnostic training.

MAS have been successfully employed in the development of applications in a large

number of domains [19]. In this context, multi-agents approach is an interesting alternative

because it makes it easier integration of several components of the AMPLIA environment

(some were agentified, e.g. the SEAMED facilities). This approach enables a better distance

support to the learner, customised guiding, besides setting a real partnership among the

several agents of the system, both human and artificial. The use of MAS helped also the

development of systems with user’s participation (learner and physician). The result is a

flexible system, both in what concerns evolution of knowledge and teaching practices, and in

terms of inclusion of new features whose necessity is realised while using the environment.

For the future, the following AMPLIA framework’s developments are expected:

� to build new applications for decision support in medical area, through modelling of

new domains within healthcare field;

� to expand this computational tool in order that it could also evaluate influence diagrams.

An influence diagram is a probabilistic network that represents the formalisation of a

problem of decision making in an environment with uncertainty [21]; and

� to expand this computational tool in order that it could also make inferences in multiply

sectioned Bayesian network [44].

At present, the system is being submitted to an evaluation process concerning the

following aspects: network accuracy is being tested by way of case-control studies with

real patients related to specific medical fields. (In Brazil, there is not a certification

organisation for that matter yet.) In these studies the physician follows medical interview

protocols that list all variables of importance present in the particular net being tested and

that should be analysed during the interview.

For future work, we intend to describe the methodological process that is in use to

compare probabilistic networks including qualitative and quantitative aspects between

student and expert models.
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diagnóstico médico. Inform Med, Argent 2001;8:25–9.
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