Sensitivity Tuning of a Bulk Built-In Current Sensor for Optimal Transient-Fault Detection

J.-M. Dutertre¹, R. Possamai Bastos², O. Potin³, M.L. Flottes³, B. Rouzeyre³, G. Di Natale

October 2nd 2013 – Arcachon – France

1: Département SAS - Centre Microélectronique de Provence - 880, route de Mimet, 13541 Gardanne
2: TIMA - CNRS UMR N5159 - 46, avenue Félix Viallet, 38031 Grenoble France
3: LIRMM - CNRS UMR N5506) - 161, rue Ada, 34095, Montpellier France
I. Introduction
 Single Event Effect mechanism
 Bulk Built-In Current Sensor principle

II. Previous BBICS designs
 Limitations

III. Improved BBICS architecture
 Design principles and obtained results

IV. Conclusion and perspectives
I. Introduction

- Integrated circuits in radioactive environment
 - Suffer from various types of Single Event Effects (SEE)
 - Single Event Transient (SET),
 - Single Event Upset (SEU),
 - Single Event Latchup (destructive)
 - Single Event Gate Rupture, etc.

- Bulk Built-In Current Sensor (BBICS)
 - Design to monitor the advent of SETs and SEUs
 - Not to prevent their effects
I. Introduction

- SET mechanism - The inverter case

- SEE current through substrate and well biasing TAPs
I. Introduction

- **SET mechanism - The inverter case**

 - **ionizing ion track**
 - **in ‘1’**
 - **out ‘0’**

 ![Diagram showing inverter case with ionizing ion track](image)

- **SEE current through substrate and well biasing TAPs**
I. Introduction

- **SET mechanism - The inverter case**

- **SEE current through substrate and well biasing TAPs**
I. Introduction

- **SET mechanism - The inverter case**

 ![Diagram of a CMOS inverter with an ionizing ion track](image)

 - **ionizing ion track**
 - **P substrate**
 - **N well**
 - **NMOS**
 - **PMOS**
 - **NTAP**
 - **Metal 1**
 - **MOS gate**

- **SEE current through substrate and well biasing TAPs**
SET mechanism - The inverter case

- SEE current through substrate and well biasing TAPs
I. Introduction

- **BBICS principle**

The diagram illustrates a BBICS (BiCMOS Bipolar Integrated Circuit System) principle with a focus on the PN junction and its connection to Gnd and Vdd. The circuit includes NMOS transistors and a sensitive PN junction within the N well.
I. Introduction

- **BBICS principle**

![Diagram of BBICS principle]

- **P substrate**
- **N well**
- **P+**
- **N+**
- **NMOS**
- **NTAP**
- **Sensitive PN junction**
- **Gnd**

Diagram Description:
- The diagram illustrates the BBICS principle with labeled components: P substrate, N well, P+, N+, NMOS, NTAP, and sensitive PN junction. The connections to and from Gnd (ground) are also indicated. The state '0' and '1' are marked with arrows indicating the flow direction.
I. Introduction

- BBICS principle

Diagram showing BBICS principle with NMOS and PMOS transistors, and connections to ground (Gnd) and power supply (Vdd).
I. Introduction

- **BBICS principle**

 - Ionizing ion track
 - PMOS bulk
 - N well
 - NTAP
 - Sensitive PN junction
 - NMOS
 - BBICS
 - P+ to Gnd
 - N+ to Vdd

 - \(P \) substrate
 - \(N \) well

 - Circuit diagram showing the BBICS principle.
I. Introduction

BBICS principle

- BBICS: monitor SEE current through node PMOS_bulk

![Diagram showing BBICS principle](image-url)
II. Previous BBICS designs

- Tbulk BICS - Neto et al. 2007 (IEEE Tran. on Nuclear Science)
II. Previous BBICS designs

Mar1k BICS

Alarm triggered

PMOS_bulk = Vdd

Reset
II. Previous BBICS designs

- **Tbulk BICS**
 - Design in 32-nm CMOS predictive technology
 - Suffer from high static power consumption:
 - transistors M9-M10-M11 always ON
 - competition between M1 and M2 currents
 - **Overheads (vs unprotected IC):**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area overhead</td>
<td>+55%</td>
</tr>
<tr>
<td>Power consumption overhead</td>
<td>+100%</td>
</tr>
</tbody>
</table>
II. Previous BBICS designs

- **Low power BBICS with sleep mode** *(ESREF 2012)*
 - Design in 32-nm CMOS predictive technology
II. Previous BBICS designs

- Low power BBICS with sleep mode (ESREF 2012)
 - Design in 32-nm CMOS predictive technology

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area overhead</td>
<td>+25%</td>
</tr>
<tr>
<td>Power consumption overhead</td>
<td>+40%</td>
</tr>
<tr>
<td>Power consump. Sleep-mode</td>
<td>+25%</td>
</tr>
</tbody>
</table>
III. Improved BBICS architecture

- Design of a test chip: CMOS 65-nm
 - SET sensitivity threshold
 Defined for an inverter chain of minimal size:
 - PMOS: \(I_{PMOS_bulk} \) of 50ps@130\(\mu \)A
 - NMOS: \(I_{NMOS_bulk} \) of 50ps@99\(\mu \)A
 - BBICS sensitivity threshold
 \(I_{PMOS_bulk} \) duration and amplitude to trigger the alarm
 Has to be lower than the SET sensitivity threshold!
III. Improved BBICS architecture

- Low power BBICS with sleep mode

![Graphs showing current and voltage over time with labels for Ipmos_bulk, Ids_M1, Ids_M2, Flag_b, and Flag.]

- 99.9 to 100 time (ns)
- 0 to 100 current (µA)
- 0 to 1.0 voltage (V)

Failed to detect SET
III. Improved BBICS architecture

- Improved BBICS architecture
 - Asymmetry of the core latch (enhanced detection threshold)
 - Use of Low Vt and High Vt transistors (LVT/HVT):
 - LVT \Rightarrow switch OFF to ON more easily
 - higher current capability
 - HVT \Rightarrow switch OFF to ON less easily
 - lower current capability
 - Appropriate timing of access transistors
 - To avoid competition effect between M1 and M2
III. Improved BBICS architecture

- Improved BBICS architecture

![Diagram of Improved BBICS architecture]

- transient current
- PMOS_bulk = Vdd

- = Gnd
- = Vdd

- M3
- M4
- M7
- M8
- M9
- M1
- M2
- M5
- M6
- M1
- Sleep_mode

Vdd = Vdd
Gnd = Gnd
III. Improved BBICS architecture

- Improved BBICS efficiency

![Graph showing current and voltage changes with time](image)

- I_{pmos_bulk}
- I_{ds_M1}
- I_{ds_M2}
- $Flag$
- $Flag_b$
- $Flag_out$
- $gate1$

Alarm triggered on SET

Time (ns): 99.9 to 100.5
III. Improved BBICS architecture

- **Improved BBICS efficiency**

 - **50ps current pulse duration:**

# of inverters	10	30	50
BBICS sensitivity threshold	76µA	113µA	148µA
SET threshold	130µA	133µA	135µA

 - **Area overhead:** +30% (including both pBBICS and nBBICS)

 - **Test chip tape out:** October 14th 2013
IV. Conclusion and perspectives

Proposal of an improved BBICS architecture

- Low detection sensitivity thanks to:
 - use of LVT/HVT transistors
 - careful tuning of switching times
- Easier to adapt in various technologies
- On going test chip
IV. Conclusion and perspectives

 Perspectives

- Still room for improvement

 A Single Built-in Sensor to Check Pull-up and Pull-down CMOS Networks against Transient Faults, R. Possamai Bastos et al., PATMOS 2013

- Laser testing of the test chip

 Picosecond range laser source
Thank you for your attention
Bulk biasing with BBICS in advanced CMOS