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Parametric shape optimization aims at minimizing a function f(x) where x ∈ X ⊂ Rd is a
vector of d Computer Aided Design parameters, representing diverse characteristics of the shape
Ωx. It is common for d to be large, d & 50, making the optimization di�cult, especially when
f is an expensive black-box and the use of surrogate-based approaches [1] is mandatory.

Most often, the set of considered CAD shapes resides in a manifold of lower dimension where
it is preferable to perform the optimization. We uncover it through the Principal Component
Analysis of a dataset of n designs, mapped to a high-dimensional shape space via φ : X → Φ ⊂
RD, D � d. With a proper choice of φ, few eigenshapes allow to accurately describe the sample
of CAD shapes through their principal components ααα in the eigenbasis V = [v1, . . . ,vD].

A Gaussian Process is �tted to the principal components ααα(1), . . . ,ααα(n) ∈ RD instead of
x(1), . . . ,x(n) ∈ X. The δ most important eigenshapes are selected by maximizing a likelihood
with a L1 regularization. These δ active dimensions with components ααα

a are emphasized without
entirely neglecting the D− δ remaining dimensions by constructing an additive GP [3]: Y (ααα) =
Y a(αααa) + Y a(αααa). Y a is the main-e�ect δ-dimensional anisotropic GP and Y a is a coarse,
isotropic high (D − δ) dimensional GP which only requires 2 hyperparameters.

A rede�nition of the Expected Improvement [1] is proposed to take advantage of the space
reduction and to carry out the maximization in the smaller space of important eigenshapes,
completed by a cheap maximization with regard to αααa through an embedding strategy [4],
ααα(n+1) = arg maxEI([αααa,αααa]). Its pre-image, x(n+1) = arg min

x∈X
‖V>φ(x)−ααα(n+1)‖2, is the next

evaluated design. A new replication strategy is described that guides the optimization to the
manifold of the observed ααα(i) , i = 1, . . . , n. It is based on the repelling property of EI and the
addition of both ααα(n+1) and V>φ(x(n+1)) to the pool of components conditioning the GP.
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