An agent approach to finding local optima and other ideas about distributed resolution of optimization problems

D. Villanueva, R. Le Riche, G. Picard

University of Florida
Institut Henri Fayol, EMSE
CNRS LIMOS

12 April 2013
One presentation, three stories...

- Collaboration between an applied mathematician and a computer scientist
- Collaborative decision: an analytical model for a wide-ranging topic
- An agent-based algorithm for locating local optima
One presentation, three layers...

Context
ID4CS & MDO
Future works

Dialog
Incomprehension
Enrichment

Scientific work
Algorithm
Overall context: ID4CS project (1)

- ANR Project (2010-2013)
- Integrative Design for Complex Systems
 e.g. aircraft, motors
- Pluri-disciplinary consortium

http://www.irit.fr/id4cs
Several research directions:
- Multi-disciplinary
- Multi-fidelity
- Multi-criteria
- Multi-*
- Uncertainties

Integrative approach
- multi-agent platform \(\Rightarrow\) Fine-grained \textit{a priori}\
Multi-disciplinary optimization (centralized – preliminary design)

Business decision
e.g. 200 passengers, transatlantic

Multi-criteria optimization with physically coupled simulations

\[
\begin{align*}
\min_{x \in S} \text{mass}(x) \\
\min_{x \in S} \text{consumption}(x)
\end{align*}
\]

s.t.
\[
\begin{align*}
\text{range}(x) > 3000 \\
\text{passenger}(x) > 200
\end{align*}
\]
Multi-disciplinary optimization
(distributed – consolidation)

Business decision
e.g. 200 passengers, transatlantic

Multi-criteria optimization with physically coupled simulations

- \(\min_{x \in S} \text{mass}(x) \)
- \(\min_{x \in S} \text{consumption}(x) \)
- s.t. \(\text{range}(x) > 3000 \)
 \(\text{passenger}(x) > 200 \)

- Optimize Drag
 Lift

- Optimize Mass
 Structural strength

- Optimize Range
 Landing/Take-off length

- Optimize Noise/altitude

- Optimize Power
 Consumption

Institut Fayol Seminar (Le Riche, Picard)
Multi-disciplinary optimization
(decentralized – finer agentification)

Objective 1
e.g. min. the mass

Objective 2
e.g. min. consumption

Aerodynamics

Missions

Minimize Input-output discrepancies

Optimize Drag
Optimize Mass
Structural strength

Optimize Range
Landing/Take-off length

Optimize Noise/altitude

Acoustics

Motor

Structure/Mass

Optimize Power
Consumption

Drag

Lift

int. shape

ext. shape

noise

cons.

mass

Minimize
Input-output discrepancies

Optimize

Range
Landing/Take-off length

Optimize
Noise/altitude

Optimize
Power
Consumption

Optimize
structual strength

Optimize
Mass

Optimize
Drag

Optimize

Range
Landing/Take-off length

Optimize
Noise/altitude

Optimize
Power
Consumption

Optimize
Minimize
Input-output
discrepancies

Optimize
Minimize
Input-output
discrepancies

Optimize
Minimize
Input-output
discrepancies

Optimize
Minimize
Input-output
discrepancies
AM (skeptical about the decomposition, particularly at low granularity): “What are agents?”
Dialog between the Computer Scientist (CS) and the Applied Mathematician (AM)

- **AM** (skeptical about the decomposition, particularly at low granularity): “What are agents?”
- **CS**: “They are a decomposition of a problem into autonomous tasks (agents) that collectively, through interaction mechanisms and protocols, solve the initial problem.”
- **AM** (dubious, partial interest): “hum …”
Dialog between the Computer Scientist (CS) and the Applied Mathematician (AM)

- **CS** (somewhat skeptical about the application): “What is special about the optimization of such objects?”
Institut Fayol Seminar (Le Riche, Picard)

Dialog between the Computer Scientist (CS) and the Applied Mathematician (AM)

● CS: “What is special about the optimization of such objects?

● AM: “An important issue is that realistic simulations are – and will always be – numerically costly. For the optimization, we use metamodels (statistical models of other numerical models)”

Goal: \(\min_{x \in S} f(x) \)

\(x^1 \)	\(f(x^1) \)
\(\ldots \)	\(\ldots \)
\(x^m \)	\(f(x^m) \)

● CS (dubious about centralization, partial interest): “hum ...”
From pluri- to inter-disciplinarity: will / time and pragmatism

- At this point we have 1 multi-* problem and 2 points of view (agents vs. optimization)

- **Pragmatism**: A PhD is hired for the project (Diane Villanueva) → Need clear work directions

- **Enabler 1**: will / time. One hour meeting per week for a year

- **Enabler 2**: a joined PhD with the US and a student not trapped in formal disciplines (French CNU sections)
Research directions: how to agentify an optimization problem?

\[
\begin{align*}
\min_{x \in S} f(x) \\
g(x) &\leq 0
\end{align*}
\]

search space partition: synchronize \(n \) optimizers, dividing work in \(S \)

variables and criteria decomposition
Research directions: how to agentify an optimization problem?

\[
\begin{aligned}
\min_{x \in S} f(x) \\
g(x) \leq 0
\end{aligned}
\]

- **Main direction for us**: search space partition: synchronize \(n \) optimizers dividing work in \(S \)

- **Secondary direction**: variables and criteria decomposition

\(S \)
Agent-based dynamic partitioning algorithm

1 subregion
+ 1 surrogate
+ 1 local constrained optimizer
+ 1 simulator

= 1 agent

Agents work in parallel to collectively solve the optimization problem:

\[
\min_{x \in S \subset \mathbb{R}^n} f(x) \\
g(x) \leq 0
\]

Agent coordination through:
- update of the partition
- agent creation
- agent deletion

(let’s say 1 agent is affected to a set of computing nodes)
Agent-based dynamic partitioning algorithm: Goals

Solve a global optimization problem AND locate local optima
A method that can be used for expensive problems (thanks to the surrogates)

The search space partitioning allows:

1) to share the effort of finding local optima

2) to have surrogates defined locally (better for non-stationary problems)
Agent-based dynamic partitioning algorithm: Global flow chart

- Database
- Update partitions P_i
 - Agents
 - Deletion
 - Creation

Agent 1

... Agent i

Form local surrogates \hat{f}, \hat{g}

Optimize or explore:

- $\min_{x \in P_i \subset S} \hat{f}(x)$ s.t. $\hat{g}(x) \leq 0$
- or $\max \min_{x \in P_i, x_i \in P_i} \|x - x_i\|$

Parallelized processes

Optimize: SQP.

Surrogates: polynomial response surface (orders 1, 2 and 3), kriging (linear or quad. trend), chosen based on cross-validation error
Subregion definition

Subregions P_i are essentially defined by the centers c_i of the subregions: P_i is the set of points closer to c_i than to other centers. P_i are Voronoi cells.
Dynamic partitioning

The partitioning is updated by moving the centers to the best point in their subregion:

\[\text{current} = \text{current center} \]
\[\text{new} = \text{point added to } P_i \text{ at the last iteration and not on boundary of } P_i \]

if \text{current} is infeasible then

 if \text{new} is less infeasible then move to \text{new}

elseif \text{current} is feasible then

 if \text{new} is feasible & has better \(f \) then move to \text{new}

end

Property : agents will stabilize at local optima
Agent deletion and creation

Deletion
If two agent centers are getting too close to each other, delete the worst.

Creation

Principle 1: the existence of 2 clusters in a subregion is a sign of at least 2 basins of attraction → split the subregion by creating a new agent.

Principle 2: when an agent is stagnant for 3 iterations → split the subregion by creating a new agent.

Implementation: K-means + check on inter vs. intra class inertia + move centers at data points (farthest from existing centers).
Let's look at the behavior in 2D...
Let's look at the behavior in 2D...
Two Examples

- Examined two problems to study the success of this method

- Compared **multiple agents with partitioning** to a **single global agent** for an **equal number of expensive function evaluations**
 - Single Global Agent: Single surrogate acting over the entire design space
 - Exploration due to points being too near to each other

- Dynamics
 - Minimum of 1 region
 - Initially 1 region
Modified Hartman 6: Problem Description

- Hartman 6 is a popular benchmark test problem for surrogate-based global optimization algorithms
 - 6 dimensional multi-modal problem

\[
\begin{align*}
\text{minimize } & f_{\text{hart}}(x) = -\sum_{i=1}^{q} a_i \exp \left(-\sum_{j=1}^{m} b_{ij} (x_j - d_{ij})^2 \right) \\
\text{subject to } & 0 \leq x_j \leq 1, j = 1, 2, \ldots, m = 6
\end{align*}
\]

- Modified Hartman 6 includes two Gaussian holes “drilled” into the design space to create 4 clear optima

- Measured volume of basins of attraction by percentage of starts with gradient based optimizer at random locations in design space that found each optimum

<table>
<thead>
<tr>
<th>Optimum</th>
<th>f</th>
<th>% of starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.33</td>
<td>50.4</td>
</tr>
<tr>
<td>2</td>
<td>-3.21</td>
<td>21.1</td>
</tr>
<tr>
<td>3</td>
<td>-3.00</td>
<td>8.7</td>
</tr>
<tr>
<td>4</td>
<td>-2.90</td>
<td>19.8</td>
</tr>
</tbody>
</table>

Should be the hardest to located
Modified Hartman 6: Success in Locating Optima

- Measured success in locating solution 1% distance away from optimum for 50 repetitions (50 different initial DOEs)
 - Distance is Euclidean distance normalized by largest possible distance in space
Modified Hartman 6: Convergence to Each Optimum

- Median objective function with increasing function evaluations
- For most optima, not a significant difference in convergence rates

... but this was not the case for optima in smaller basins
- Slow convergence to optimum 3
- Multiple agents with partitioning were able to find these optima
Modified Hartman 6: Surrogate Error at Test Points

- Measured the error of the surrogate approximations of f at 1000 test points (LHS sampling) by e_{rms}

- Error is reduced in the case with partitioning
- Error for single global agent stays nearly constant
Integrated Thermal Protection System: Problem Description

- Design of an integrated thermal protection system
 - Structure on launch vehicle that provides structural support and heating protection
 - Two failure modes: thermal and stress
 - 5 design variables: \(x = t_w, t_B, d_S, t_T, \theta \)

\[
\begin{align*}
\min_x m(x) \\
\text{s.t.} \quad g_1(x) &= \frac{T_{BFS}(x) + S_T}{T_{allow}} - 1 \leq 0 \\
&
g_2(x) &= \frac{\sigma_{web}(x)S_S}{\sigma_{allow}} - 1 \leq 0
\end{align*}
\]

Approximate both constraints with surrogates
Errors at test points for both surrogates were small over the iterations (\(\sim 10^{-10}\))
Integrated Thermal Protection System: design trade-offs

\[\min_{x} m(x) \]

s.t. \[g_1(x) = \frac{T_{BFS}(x) + S_T}{T_{allow}} - 1 \leq 0 \]

\[g_2(x) = \frac{\sigma_{web}(x)S_s}{\sigma_{allow}} - 1 \leq 0 \]
ITPS Example: Success in Locating Optima

- Measured success in locating a **feasible** solution 0.01 distance from optimum for 50 repetitions (50 different initial DOEs)

All cases show similar success percentages
ITPS Example: Convergence to Each Optimum

- Median objective function with increasing function evaluations

For some optima, we observe that the nearest best points are nearby optima until locating the other basin.

Optimum 1 (nearest optimum)

For most optima, incredibly quick convergence (within 5 function evaluations, not including the initial DOE)
Problem Dependent Success

- Why is there a difference in the success and efficiency of partitioning between both problems?
 - Behavior in the ITPS problem is easy to approximate globally
 - Observed smaller error at test points with single surrogate
 - Hartman 6 is more complex, requiring more accurate surrogates to approximate the behavior
- Partitioning may be dependent on the need for higher accuracy surrogates
- Otherwise, simpler methods are sufficient
To sum up

- Limited expensive function calls (thanks to metamodels)
- Local optima are found
- Partitioning may be more efficient than random exploration
- Potential for distribution (thanks to agents)
This optimization algorithm will be used in the ID4CS platform to solve local optimization problems.

Asset: find local optima, which might become global as the overall problem formulation changes (new constraints).
Back to the interdisciplinary dialog

- **CS plus**: new knowledge useful for the future. Surrogate-based reasoning should be useful in other multi-agent applications.

- **CS minus**: contribution somewhat unbalanced towards the applied math / mechanical engineering side (due to Diane's background).
Back to the interdisciplinary dialog

• AM plus: towards multi-optimizers for distributed computing and/or collaborative decision. Would not have done it otherwise since autonomy is suboptimal in terms of centralized information

• AM minus: would like to see middle grain agents, either emerging from low grain or from a priori decomposition (according to the organization structure). Would like convergence analysis
Back to decision, agents and optimization

- Formalized decision model based on multi-agent and optimization
- There still exist solutions to explore, between fully centralized MDO and fully agentified MDO
Multi-disciplinary optimization (discipline-to-agent mapping)

Agent Missions
- Optimize Range
- Landing/Take-off length

Agent Aerodynamics
- Missions
- Aerodynamics
- Optimize Drag
- Lift

Agent Acoustics
- Acoustics
- Optimize Noise/altitude

Agent Motors
- Motors
- Optimize Power Consumption

Agent Structure/Mass
- Structure/Mass
- Optimize Mass
- Structural strength
Some reflexions to integrate PLM in ID4CS

- To exploit the integrative properties of such platforms
- But additionally requires to handle multi-fidelity and to integrate more models (at least)

Is such an approach applicable to human organizations (à la Airbus)?
Bibliography

Questions?

This work has benefited from support from Agence Nationale de la Recherche (French National Research Agency) with ANR-09-COSI-005 reference.