
Expected improvements for the asynchronous

parallel global optimization of expensive

functions : potentials and challenges

J. Janusevskis1, R. Le Riche1,2, D. Ginsbourger3, and R. Girdziusas1

1 Ecole des Mines de Saint-Etienne, Saint-Etienne, France,
2 CNRS, UMR 5146 Cl. Goux, France,

3 Departement of Mathematics and Statistics, University of Bern, Switzerland.

Abstract. Sequential sampling strategies based on Gaussian processes
are now widely used for the optimization of problems involving costly
simulations. But Gaussian processes can also generate parallel optimiza-
tion strategies. We focus here on a new, parameter free, parallel expected
improvement criterion for asynchronous optimization. An estimation of
the criterion, which mixes Monte Carlo sampling and analytical bounds,
is proposed. Logarithmic speed-ups are measured on 1 and 9 dimensional
functions.

1 Introduction to parallel expected improvements

The current technological solution for optimizing functions of numerically costly
simulators is to rely on an increasing number of processing units (processors,
cores, GPUs). Demanded features of new parallel optimization algorithms are
not only high speed-ups but also the ability to work with heterogeneous process-
ing units (e.g., computing grids) and fault tolerance. Evolutionary algorithms
offer many opportunities for parallelization, including in heterogeneous comput-
ing networks, and in master-worker or island computing structures [2]. Master-
worker parallel optimization algorithms are more common as they fit the costly
simulator case: the optimizer is the master node, the workers evaluate the objec-
tive functions and constraints. In [6] for example, a parallel and asynchronous
version of the local pattern search algorithm is described. [9] presents a deter-
ministic global parallel algorithms which, contrarily to the forthcoming method
is based on radial basis functions and has a synchronization step. [10] and [1]
describe methods where Gaussian processes are used through expected improve-
ment maximization with restarts and infill sampling, respectively, to provide the
set of points to evaluate in parallel. Boths methods have a synchronisation step
when the master optimizer iterates.

This article also proposes a sampling criterion based on Gaussian processes.
Its originality relies on an asynchronous extension of the multi-points expected
improvement of [3] which, itself, was a parallel extension of the expected im-
provement of [8]. In the sequel, the parallel asynchronous expected improvement
will be denoted EI(µ,λ).

2

A distinctive feature of EI(µ,λ) is to provide a unified mathematical treat-
ment of the already evaluated and the currently running points for optimization,
therefore no additional parameter is introduced to parallelize the search. Initial
empirical results on 1D and 9D functions show that logarithmic speed-ups are
obtained. This work also illustrates that EI(µ,λ) is difficult to compute.

2 A unified presentation of parallel expected

improvements

Let us consider the optimization problem minx∈Rd f(x) where each evaluation of
f implies a call to a numerically intensive simulation program, and assume that
a set of past observations (X, f(X)) has been gathered. In the Bayesian Global
Optimization settings considered here, the unknown f is represented a priori

by a Gaussian Process (Y (x))x∈Rd , and is being approximated relying on the
conditional distribution of Y knowing that Y (X) = f(X) (Kriging metamodel).
We focus here on cases where λ computing nodes are available for starting new
simulations while µ computing nodes are currently evaluating f at a set of µ ≥
0 “busy” points Xbusy := {x1

b, . . . , x
µ
b}. We define the asynchronous multi-

points Expected Improvement of Xasy := {x1
a, . . . , x

λ
a} as

EI(µ,λ)(Xasy) := E

[

(min(Y (X ∪ Xbusy))−min(Y (Xasy)))
+
|Y (X) = f(X)

]

,

where [•]
+

≡ max(0, •). This criterion, which was initially introduced in [4],
measures how much progress with respect to already calculated or currently
calculating points (X∪Xbusy) will be made on average at Xasy. The case µ = 0,
λ = 1 is the usual EI defined in the EGO algorithm [8]. A parallel algorithm
that works by maximizing EI(µ,λ) can now be introduced:

Asynchronous Parallel EI algorithm

1. Generate X through a space-filling design. Calculate f(X).
2. While calculation budget not exhausted do

(a) [non blocking] Retrieve new x’s and f(x)’s if any. Update the kriging
model (optionally with parameter re-estimation). Update λ and µ.

(b) Generate λ points by maxEI(µ,λ)(x1
a, . . . , x

λ
a) using a global optimizer

(e.g. CMA-ES [5]). Send them to worker nodes for evaluation.

The classic EI criterion has the desirable property that its maximum lies away
from already sampled points of X and strikes a comprise between the exploration
of unknown regions of the design space and the intensification of the search in
known highly performing regions [8]. In addition, the multi-points asynchronous
EI(µ,λ) has its maximum away from any subset of already sampled and currently
running points, X ∪ Xbusy (it is null there while I is a positive variable, [7]).
Another advantage of EI(µ,λ) is that it does not introduce extra parameters.

EI(µ,λ) accounts for all ratios of optimizer over simulation computation
times. If the simulations are much longer than any optimizer iteration (krig-

3

ing update and EI maximization), points will be allocated to newly available
nodes one at a time, in which case EI(µ,λ=1) will be used. Vice versa, if the
optimizer iteration takes longer than the simulations, no busy point occurs and
EI(µ=0,λ) is relevant. Intermediate cases call for general EI(µ,λ)’s.

3 Bounds and estimation of EI
(µ,λ)

While the calculation of EI(0,1) and EI(0,2) is analytical [3], no general expres-
sion for EI(µ,λ) is known. We propose to estimate EI(µ,λ) through a Monte Carlo
strategy augmented by bounds knowledge. In particular, the following bounds
are established in [7] where EI∗(xi

b, x
j
a) := E

[

(Y (xi
b)− Y (xj

a))
+|Y (X) = f(X)

]

:

max
i=1,λ

EI(xi
a) ≤ EI(0,λ)(Xasy) ≤

λ
∑

i=1

EI(xi
a)

0 ≤ EI(µ,λ)(Xasy) ≤ min





λ
∑

i=j

EI(xj
a),

λ
∑

j=1

EI∗(x1
b , x

j
a), . . . ,

λ
∑

j=1

EI∗(xµ
b , x

j
a)





All the expressions in the bounds are analytical, including the EI∗ terms, be-
cause they are instances of the usual EI formula [8].

The Monte Carlo estimator of the mean of I(µ,λ) and its variance are calcu-
lated from N samples of the conditional Gaussian process Y (i.e., samples ij of
the improvements) as follows:

EI
(µ,λ)
MC (x) =

1

N

N
∑

j=1

i
(µ,λ)
j (x) , σ2

MC(x) =
1

N(N − 1)

N
∑

j=1

(i
(µ,λ)
j (x)− EI(µ,λ))2

We now introduce the above bounds through Bayes law. The a priori den-
sity of EI(µ,λ) is uniform between the lower and upper bounds, U(L,U). Since

the likelihood of the expectation estimator, p
(

EI
(µ,λ)
MC |EI(µ,λ)

)

, is Gaussian,

the a posteriori density is a known truncated Gaussian as can be seen from

p
(

EI(µ,λ)|EI
(µ,λ)
MC

)

= p
(

EI
(µ,λ)
MC |EI(µ,λ)

)

U(L,U)/const. Calculation details

are given in [7] and yield estimations of the mean and the variance of

EI(µ,λ)(x)|EI
(µ,λ)
MC (x), denoted M(x) and V 2(x), respectively, which account

for both Monte Carlo simulations and the bounds.

The asynchronous parallel EI algorithm introduced earlier has a step that
maximizes EI(µ,λ)(•) with the CMA-ES algorithm ([5]). In CMA-ES, the objec-
tive function values are used to rank the explored points. We propose to modify
this comparison of points (say xi and xj) in order to control the Monte Carlo
simulations:

4

Pairwise ranking procedure

1. Set confidence k (e.g., over 60% confidence for k = 1), N , ∆N ,
2. While not stop do

(a) If M(xi)−kV (xi) ≥ M(xj)+kV (xj) then EI(µ,λ)(xi) ≥ EI(µ,λ)(xj),
stop. (And vice versa.)

(b) Decrease the Monte Carlo variances by allocating extra samples:
∆Ni = V (xi)∆N/(V (xi) + V (xj)), ∆Nj = ∆N −∆Ni.

4 Test results

Fig. 1: Left: two of the ten sampled trajectories with Matern 5/2 kernel and
scale θ = 0.15. Right: mean normalized improvement as a function of iteration
for λ = 1 to 4 (µ = 0), averaged over 10 test functions (defined as 1D trajectories
such as those on the left).

The tests reported in [7] are now summarized.

Firstly, 100 functions in 1D have been generated by sampling Gaussian pro-
cess trajectories (see the 2 examples of Fig.1). For each function, a pair of points
was randomly chosen and their EI(µ,λ) compared, µ = 0, 1, 3 and λ = 1 to 5. It is
observed that, on average, accounting for the bounds divides by 7 the total num-
ber of Monte Carlo simulations necessary to discriminate the points. However, a
first difficulty appeared. When µ > 0, 25% of the pairs needed over N = 100, 000
MC samples for the comparison, i.e., their points had very close EI(µ,λ) values:
the EI(µ,λ) function has plateaus. This proportion increased when the pairs
were generated by optimization because these plateaus correspond to high per-
formance regions of the design space.

The second issue stems directly from EI(µ,λ)’s definition: its input is high
dimensional (dimXasy = λ d), making its maximization potentially costly.

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

no
rm

al
iz

ed
 im

pr
ov

em
en

t

iteration

1
2
4
8

16

Fig. 2: Mean normalized improvement as a function of iteration for λ = 1 to 16
(µ = 0), 9 dimensional test case.

Thirdly, on the positive side, the experiments summarized in Fig.1 and 2
show that logarithmic speed-ups are obtained: we have observed

time to solve, λ = 1

time to solve, λ
≈ 1 + b log(λ)

where b = 0.85 and 0.49 in 1 and 9 dimensions, respectively. The 9D test function
is the approximation of a matrix by its rank 1 counter part:

(B∗

mr,C
∗

rn) = arg min
Bmr,Crn

‖Amn −BmrCrn‖, r < rank(Amn), (1)

where ‖ · ‖ is the Frobenius norm, A is a 4× 5 matrix of uniformly distributed
elements in [0, 1], B and C are a column and a row vector whose elements
are constrained to be in [−1, 1], respectively. This is a continuous nonconvex
9-dimensional box-constrained optimization problem whose solution is given by
the first singular vectors. An instance of a typical run is shown for λ = 1 to 16,
µ = 0, in Fig. 2.

The observed speed-up is due to the kriging model which summarizes all
of the information gathered by the worker nodes, including the currently run-
ning simulations. Further work addressing the aforementioned estimation and
optimization difficulties of EI(µ,λ) is needed.

6

References

1. Berbecea, A.C., Kreuawan, S., Gillon, F. and Brochet, P.: A Parallel Multiobjective
Efficient Global Optimization: The Finite Element Method in Optimal Design and
Model Development. IEEE Transactions on Magnetics, 46(8), pp. 2868-2871, 2010.

2. Branke, J., Kamper, A., Schmeck, H.: Distribution of evolutionary algorithms in
heterogeneous networks. In Deb K. et al., eds, GECCO 2004, LNCS 3102, Springer,
pp. 923-934, 2004.

3. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize opti-
mization. In Tenne Y. and Goh C.-K., eds., Computational Intelligence in Expensive
Optimization Problems, Springer series in Evolutionary Learning and Optimization,
pp. 131-162, 2009.

4. Ginsbourger, D., Janusevskis, J., Le Riche, R.: Dealing with asynchronicity in par-
allel Gaussian Process based global optimization. HAL technical report no. hal-
00507632, http://hal.archives-ouvertes.fr/hal-00507632/, July 2010

5. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2), pp. 159-195, 2001.

6. Kolda, T. G. : Revisiting asynchronous parallel pattern search for nonlinear opti-
mization. SIAM J. Optimization, 16(2), pp. 563-586, 2005.

7. Janusevskis, J., Le Riche R., Ginsbourger, D.: Parallel expected improvements for
global optimization: summary, bounds and speed-up. HAL technical report no. hal-
00613971, http://hal.archives-ouvertes.fr/hal-00613971_v1, August 2011

8. Jones, D.R., Schonlau, M. and Welch, W. J.: Efficient global optimization of ex-
pensive black-box functions. Journal of Global Optimization, 13(4), pp. 455-492,
1998.

9. Regis, R. G., Shoemaker, C. A.: Parallel radial basis function methods for the global
optimization of expensive functions. European J. of Operational Research, 182, pp.
514-535, 2007.

10. Sobester, A., Leary S.J. and Keane, A.J.: A parallel updating scheme for approx-
imating and optimizing high fidelity computer simulations. J. of Structural and
Multidisciplinary Optimization, 27, pp. 371-383, 2004.

