Call for Chapters

An edited volume of CRC Press Taylor and Francis group
Handbook of Pairing Based Cryptography
Editors: Nadia El Mrabet and Marc Joye


As pairings are aimed to be embedded into a large number of different devices, the efficiency of a pairing implementation is an active and living subject of research. The book will be a state of the art of the latest improvements for pairing computations. We will present up to date optimizations for a pairing implementation. We will consider the choice of the elliptic curve, the representation of the finite field and the coordinate system of points over the elliptic curves, together with software and hardware issues. The book will seek to balance the theory with practice, and the use of computational approaches.

Important dates

Abstract due: February 15, 2015
Notification of acceptance: March 15, 2015
Manuscript due: July 15, 2015
Completion of reviews: September 1, 2015
Revised manuscripts due: October 15, 2015
Publication: March 2016


The book will be devoted to efficient pairing computations and implementations. Pairings are a very interesting tool for cryptographers. They provide new protocols such as Identity Based Cryptography and allows the simplification of existing protocols such as signature schemes. The implementation of a pairing involves several levels of arithmetics: the arithmetic of finite fields, extensions of finite fields, the arithmetic of elliptic curves and several algorithmic problems. We will present in the book the various pairings available for cryptographic use. We will provide all the necessary mathematical background about finite fields and elliptic curves.

Each chapter will include the presentation of the problem, the mathematical formulation, discussion on the implementation issues, the solutions accompanied by code or pseudo code, several numerical results, and references to further reading and notes.
In line with our desire for accessibility, the book will attempt to be a self-contained guide to the implementation of a pairing algorithm, providing a synopsis of the required background mathematical material necessary to understand the methods in the introductory chapters.
We propose below a tentavive table of content. Of course the content of each chapter can be modified and new, different chapters can be proposed.

Contributions will particularly be expected to give a survey of a larger part of the literature, and prepared using the Latex2e template. Interested authors should send an abstract of their planned contribution to the editors by electronic mail (,, by February 10th 2015. Upon acceptance, the full contributions are due by June 15th 2015. The volume is expected to appear in March 2016. Proposal accepted by CRC Press .