Pairing : an arithmetical point of view

Nadia EL MRABET

Université Montpellier II

Journées arithmétiques Edinburgh July 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Pairings for cryptographers Definition

Data

- $n \in \mathbb{N}^*$.
- G_1 and G_2 two additives abelian groups of order n.
- G₃ cyclic group of order n.

Definition A pairing is a map :

$$e:\,G_1\times\,G_2\,\rightarrow\,G_3$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Pairings for cryptographers Properties

• Bilinear :
$$\forall P, P' \in G_1, \forall Q \in G_2$$

 $e(P + P', Q) = e(P, Q).e(P', Q)$
 $e(P, iQ) = e(P, Q)^i$

• Non-degenerate :

$$\forall P \in G_1 - \{0\}, \exists Q \in G_2 \ s.t. \ e(P,Q) \neq 1$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Pairings for cryptographers Cryptographic use

Destructive :

• MOV attack : Menezes, Okamoto and Vanstone.(1993)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Constructive (since 2000) :

- Tri partite Diffie Hellman key exchange.
- Identity based scheme.
- Short signature.

Weil Pairing

- Let E an elliptic curve over a finite field K.
- *n* an integer prime to *Char*(*K*).
- $\overline{E[n]} = \{Q \in E(\overline{K}), [n]Q = P_{\infty}\}.$
- F_P the rationnal function such that $div(F_P) = nD_P$

For P and Q sucht that $supp(Div(F_P)) \cap supp(Div(F_Q)) = \emptyset$:

$$e_W : E[n] \times \overline{E[n]} \mapsto U_n$$

 $e_W(P,Q) = \frac{F_P(D_Q)}{F_Q(D_P)}$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Realization of pairings Notations

ション ふゆ く 山 マ チャット しょうくしゃ

- *E* an elliptic curve over a finite field \mathbb{F}_q .
- $P \in E(\mathbb{F}_q)$, *n* the order of < P >.
- k the smallest integer such that $n \mid (q^k 1)$.
- $Q \in E(\mathbb{F}_{q^k}).$
- F_P the function such that : $div(F_P) = n(P) - (nP) - (n-1)P_{\infty}.$

Realization of pairings Definitions

Weil pairing :

$$e_W(P,Q) = rac{F_P(Q)}{F_Q(P)} \in \mathbb{F}_{q^k}^*.$$

Tate pairing :

$$e_{\mathcal{T}}(P,Q)=F_{P}(Q)^{\frac{q^{k}-1}{n}}\in\mathbb{F}_{q^{k}}^{*}.$$

Which is the best?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Miller algorithm Calculate $F_P(Q)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

• Initialisation : $T \leftarrow P$

1. For each bit of n:

$$\begin{array}{c} T \leftarrow [2]T \\ - \frac{f_1}{f_2} \longleftarrow \frac{f_1^2}{f_2^2} \times \frac{h_1(Q)}{h_2(Q)} \end{array}$$

2. If
$$n_i = 1$$

 $T \leftarrow T \oplus P$
 $-\frac{f_1}{f_2} \longleftarrow \frac{f_1}{f_2} \times \frac{h_1(Q)}{h_2(Q)}$

Miller algorithm How improve it?

The Miller step need computation in the field extension \mathbb{F}_{q^k} .

<u>Problem</u> : computation in \mathbb{F}_{q^k} are more expensive then computation in \mathbb{F}_q .

There is (at least) two solutions :

• Improve the arithmetic in the extension field.

 \Rightarrow pairing friendly field and cyclotomic sub group.

- As soon as possible, try to calculate in the small field.
 - \Rightarrow representation of Q and final exponentiation for Tate.

Improving the arithmetic (for Tate & Weil) Pairing-Friendly Fields

Definition

 \mathbb{F}_{q^k} is a pairing friendly field if $p \equiv 1 \mod(12)$ & $k = 2^i . 3^j$.

Theorem

 \mathbb{F}_{p^k} a pairing friendly field, β neither a square or a cube in \mathbb{F}_p . Then $X^k - \beta$ irreducible over \mathbb{F}_p .

Consequences

 \mathbb{F}_{p^k} can be constructed as a tower of quadratic and cubic extensions.

 $\Rightarrow\,$ a perceptible reduction of the cost of a multiplication in $\mathbb{F}_{p^k}.$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Improving the arithmetic (for Tate & Weil) Cyclotomic sub group

Definition A subgroup of $\mathbb{F}_{p^k}^*$ of order $\Phi_k(q)$

Lemma for k = 6, $p \equiv 2$ or 5 mod(9) \mathbb{F}_{q^6} is defined by $g(X) = X^6 + X^3 + 1$

Consequences

 \Rightarrow inversion faster because $\Phi_k(p)|(p^{k/2}+1)$ and $\alpha^{-1}=\alpha^{p^{k/2}}$.

ション ふゆ く 山 マ チャット しょうくしゃ

 \Rightarrow more efficient squaring : Lenstra & Stam method.

Improving Miller operation (for Tate & Weil) When the denominator disappears

When k is even, a better way to represent Q:

• $Q \in E(F_{q^k})$ is written $(x, y\sqrt{\beta})$ where $x, y, \beta \in F_{q^{k/2}}, \sqrt{\beta} \in F_{q^k}$

• Consequence :
$$h_2 \in F_{q^{k/2}}$$
.

- Then the Miller step is : $f_1 \leftarrow f_1^2 \cdot h_1(Q)$.
 - For Tate because of the final exponentiation.
 - For Weil because an exponentiation does not change the result.

ション ふゆ く 山 マ チャット しょうくしゃ

Improving the final exponentiation(for Tate)

To improve the computation of $\omega^{\frac{q^k-1}{n}}$:

• As
$$n/\Phi_k(q)$$

• $\omega^{\frac{q^k-1}{n}} = \left(\omega^{\frac{q^k-1}{\Phi_k(q)}}\right)^{\frac{\Phi_k(q)}{n}}$

• The exponentiation to the power $\frac{q^k-1}{\Phi_k(q)}$ is made in the tower of extension, so does not cost a lot.

• The more expensive operation is the power $\frac{\Phi_k(q)}{n}$. \Rightarrow Instead of calculation in \mathbb{F}_{q^k} , Lucas Sequence uses elements in $\mathbb{F}_{q^{k/2}}$.

Tate or Weil in odd characteristic

k	Pairing friendly	Cyclotomic
2	Tate better for l.s. $<$ 192 bits	Nothing
6	Tate better for l.s. < 256	Tate better for l.s. < 256
12	Tate better for l.s. < 256	Tate better for l.s. < 192
24	Tate better for l.s. < 256	Tate better for l.s. < 256

Characteristic 2

The equations are more simple.

- Only one inversion.
- Affine coordinates more efficient then Jacobien.
- Several improvement of the Tate pairing, none for Weil.

So, Tate is more efficient than Weil.

Further work :

- Trying to improve Weil.
- Finding for which level security Weil becomes more efficient than Tate.

ション ふゆ く 山 マ チャット しょうくしゃ

Thank you for your attention.