Defining a Continuous Marketplace for the Trading and Distribution of Energy in the Smart Grid

Gauthier Picard² J. A. Rodríguez-Aguilar¹ J. Cerquides¹

¹IIIA-CSIC

²LaHC UMR CNRS 5516, MINES Saint-Étienne

Smart grids: promises & expected outcomes

- New distribution rationale: decentralized production
 - Democratization of decentralized production: local balancing and reducing energy loss
- New context information: **energy awareness**
 - Frequently sensed data (consumption, production, pricing) impacts trading updates
- New trading rationale: **prosumption**

Modelina

Smart grids: promises & expected outcomes

- New distribution rationale: decentralized production
 - Democratization of decentralized production: local balancing and reducing energy loss
- New context information: energy awareness
 - Frequently sensed data (consumption, production, pricing) impacts trading updates
- New trading rationale: **prosumption**

How to design a decentralized market for the trading and distribution of energy?

Modelina

■ Prosumers $(j \in P)$

Modeling

- Prosumers $(j \in P)$
- Offers $(o_i : \mathbb{Z} \to \mathbb{R} \cup \{-\infty\})$

Modeling

- Prosumers $(j \in P)$
- Offers $(o_i : \mathbb{Z} \to \mathbb{R} \cup \{-\infty\})$
- Links $(\{i,j\})$ w/ some max capacity (c_{ij})

How much energy to trade, and with whom, so that the overall benefit is maximized while the energy network's capacity constraints are fulfilled?

Modelina

Solvina

Definition: energy allocation problem

The energy allocation problem (*EAP*) amounts to finding an allocation \mathbf{Y} that maximizes the overall benefit $Value(\mathbf{Y})$, with

$$Value(\mathbf{Y}) = \sum_{j \in P} v_j(\mathbf{Y}_j)$$

$$v_j(\mathbf{Y}_j) = o_j(net(\mathbf{Y}_j))$$

$$\textit{net}(\mathbf{Y}_j) = \sum_{i \in \textit{in}(j)} \mathbf{y}_{ij} - \sum_{k \in \textit{out}(j)} \mathbf{y}_{jk}$$

where \mathbf{y}_{ij} stands for the number of units that prosumer i sells to prosumer j (bounded by c_{ii})

Modeling

Example: energy trading scenario (solution)

$$Value(Y) = o_{Alice}^{-2} + o_{Bob}^{5} + o_{Carol}^{0} + o_{Dave}^{-3} = -3.5 + 11.5 + 0 - 6 = 2$$

Modeling

Distributed allocation techniques

Market-based

- ► **Double auction** (call market or CDA) where energy is traded on a day-ahead basis
- Matching between supply and demand computed by central authority
- Current market mechanisms disregard grid constraints
 → Trading and distribution as decoupled activities
- Message passing
 - Dynamic programming (MILLER, 2014; KUMAR et al., 2009)
 - ▶ Belief-propagation (MILLER, 2014)

Our contribution

Modelina

- Exploit the **tree** structure of energy networks (Gonen, 2014)
- Solve EAP as a distributed contraint optimization problem (DCOP)
- Design an exact message passing algorithm based on dynamic programming
 - ► ACYCLIC-SOLVING (DECHTER, 2003)
- Assess efficiently messages by exploiting the algebraic structure of offers and messages: valuations

Cerquides et al.

Trading Energy in the Smart Grid

Solving

Solving

Solving

Solving

Solving

Solving

Solving

Solving

Solving

Message assessment

Solvina

$$\begin{split} &\mu_{j \to \mathcal{P}_j}(\mathbf{y}_{j\mathcal{P}_j}) = \\ &\max_{\mathbf{Y}_{j-\mathcal{P}_j}} \left(v_j(\mathbf{y}_{j\mathcal{P}_j}, \mathbf{Y}_{j-\mathcal{P}_j}) + \sum_{k \in \textit{out}(j) \setminus \{\mathcal{P}_j\}} \mu_{j \to k}(\mathbf{y}_{jk}) + \sum_{i \in \textit{in}(j)} \mu_{i \to j}(\mathbf{y}_{ij}) \right) \end{split}$$

- This is the computational hard point
- Computed in $\mathcal{O}((2C_i+1)^{N_j})$
 - C_i is the capacity of the most powerful link
 - N_i is the number of neighbors of j
- ⇒ Not applicable to dense networks

Modeling

Message assessment

$$\begin{split} & \mu_{j \to \mathcal{P}_j}(\mathbf{y}_{j\mathcal{P}_j}) = \\ & \max_{\mathbf{Y}_{j-\mathcal{P}_j}} \left(v_j(\mathbf{y}_{j\mathcal{P}_j}, \mathbf{Y}_{j-\mathcal{P}_j}) + \sum_{k \in \textit{out}(j) \setminus \{\mathcal{P}_j\}} \mu_{j \to k}(\mathbf{y}_{jk}) + \sum_{i \in \textit{in}(j)} \mu_{i \to j}(\mathbf{y}_{ij}) \right) \end{split}$$

- This is the computational hard point
- Computed in $\mathcal{O}((2C_i + 1)^{N_j})$
 - ► C_i is the capacity of the most powerful link
 - \triangleright N_i is the number of neighbors of j
- ⇒ Not applicable to dense networks

⇒ Assess message more efficiently!

Modeling

- Take advantage of a particularity of the messages: restricted capacity
- Reformulate message assessment with 3 operations:

► Restriction (linear):
$$\alpha[D](k) = \begin{cases} \alpha(k) & k \in D \\ -\infty & \text{otherwise} \end{cases}$$

- ▶ Complement (linear): $\overline{\alpha}(k) = \alpha(-k)$
- ▶ Aggregation (polynomial): $(\alpha \cdot \beta)(k) = \max_{\substack{i,j \\ k=i,j}} \alpha(i) + \beta(j)$

$$\mu_{j \to p_j} = \left(\overline{O_j} \cdot \prod_{k \in out(j) \setminus \{p_i\}} \overline{\mu_{j \to k}} \cdot \prod_{i \in in(j)} \mu_{i \to j}\right) [-D_{jp_j}]$$

RADPRO algorithm

Modelina

- = ACYCLIC-SOLVING + efficient message assessment
 - Global complexity of message assessment: **polynomial** in $\mathcal{O}(nN_{max}^2C_{max}^2)$
 - ▶ Number of message assessments in $\mathcal{O}(n(2C_{max}+1)^{N_{max}})$
 - ▶ Single message assessment in $\mathcal{O}(N_j C_j n_{o_i} + N_i^2 C_i^2)$
 - Communication complexity: **linear** in $\mathcal{O}(nC_{max})$
 - ▶ 2n messages of max size $2C_{max} + 1$
 - Easily distributable

	ACYCLIC-SOLVING	RadPro
Communication	$\mathcal{O}(nC_{max})$	$\mathcal{O}(nC_{max})$
Computation	$\mathcal{O}(n(2C_{max}+1)^{N_{max}})$	$\mathcal{O}(nN_{max}^2C_{max}^2)$

Comparison with MIP solvers

RADPRO outperforms CPLEX & Gurobi (more than one order of magnitude faster than CPLEX!)

Random networks (geometric distribution) with $C_i = \mathcal{N}(100, 50)$

Efficiency of message assessment

RADPRO outperforms ACYCLIC-SOLVING (more than three orders of magnitude faster than ACYCLIC-SOLVING!)

Star-shaped networks (hubs) with $C_i \in \{10, 30, 50\}$ and $N_{max} \in [1..6]$

Scalabity

RADOPRO solves large-scale EAP with high branching factor (solving problems with capacity 100 and 100 neighbors in less than 1 min!)

Star-shaped networks (hubs) with $C_i \in \{10, 30, 50, 70, 100\}$ and $N_{max} \in [1...99]$

RadPro Limitations

Modelina

- Offers are discrete: a prosumer can offer to buy either 3 KW for 6 EUR or 2 KW for 4 EUR, but not any amount of energy between 2 KW and 3 KW and pay 2 EUR per KW.
- Such offers provide a better representation of prosumers' preferences.
- Our next goal is to extend the EAP to allow prosumers to communicate continuous (piecewise linear) utility functions.

Answering

Example: continuous energy trading scenario

- Prosumers $(i \in P)$
- Offers as piecewise linear valuations
- Links $(\{i,j\})$ w/ some max capacity (c_{ij})

Definition: continuous energy allocation problem

Given a set of prosumers *P* whose offers are piecewise linear valuations, the **continuous energy allocation problem** (*CEAP*) amounts to finding an allocation **Y** that maximizes the overall benefit *Value*(**Y**), with

$$Value(\mathbf{Y}) = \sum_{i \in P} v_j(\mathbf{Y}_j)$$

$$v_j(\mathbf{Y}_j) = o_j(net(\mathbf{Y}_j))$$

$$net(\mathbf{Y}_j) = \sum_{i \in in(j)} \mathbf{y}_{ij} - \sum_{k \in out(j)} \mathbf{y}_{jk}$$

where \mathbf{y}_{ij} stands for the number of units that prosumer i sells to prosumer j (bounded by c_{ij})

Modelina

Answering

Mapping the CEAP to a Linear Program

Decision variables per prosumer:

- interval valuation to select within a piecewise linear valuation
- amount of energy to trade within the chosen interval

Mapping the CEAP to a Linear Program

Decision variables per prosumer:

- interval valuation to select within a piecewise linear valuation
- amount of energy to trade within the chosen interval

Decision variable per link:

amount of energy to trade between prosumers

Modelina

Mapping the CEAP to a Linear Program

Decision variables per prosumer:

- interval valuation to select within a piecewise linear valuation
- amount of energy to trade within the chosen interval

Decision variable per link:

amount of energy to trade between prosumers

Constraints:

Modelina

- Mutually exclusive intervals: only an interval valuation per piecewise linear valuation
- Energy balance: amount of energy to trade per prosumer equals difference between input and output energy
- Network capacity: energy traded between prosumers respects links' capacities

Example: continuous energy trading scenario

- Prosumers $(i \in P)$
- Offers as piecewise linear valuations
- Links $(\{i,j\})$ w/ some max capacity (c_{ij})

Modeling

Mapping the CEAP to a Linear Program

LP that solves the continuous energy allocation problem:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^{|P|} \sum_{k=1}^{|W_j|} a_{o_j^k} \cdot x_j^k + b_{o_j^k} \cdot z_j^k \\ \text{subject to} & z_j^k \cdot I_{o_j^k} \leq x_j^k \leq z_j^k \cdot u_{o_j^k} \\ & \sum_{l=k}^{|W_j|} z_j^k = 1 \\ & \sum_{i < j} y_{ij} - \sum_{q > j} y_{jq} = \sum_{k=1}^{|W_j|} x_j^k \\ & y_{ij} \in D_{ij} \\ & z_j^k \in \{0,1\} \\ & x_j^k \in \mathbb{R} \end{array}$$

$$\forall j \in P, 1 \leq k \leq |W_j|, \forall (i,j) \in E$$

CEAP: Current state

Modeling

Completed

- Implementation of a MIP solver for the CEAP based on our LP mapping.
- Extension of RadPro to provide a decentralised solver for the acyclic CEAP. This hinges on a valuation algebra whose valuations are piecewise linear functions.

Ongoing

 Empirical evaluation of both the centralised and decentralised solvers for CEAP

Summary of contributions (I)

Energy Allocation Problem

► EAP is formulated as a **DCOP**

Valuation algebra

- Used to implement messages and offers
- ▶ Efficient operations (agregation, negation, selection)

RADPRO algorithm

- Based on dynamic programming to solve acyclic EAP
- Outperforms classical and DP-based solvers
- Based on the valuation algebra for polynomial message computation

Modeling

Summary of contributions (II)

■ Continuous Energy Allocation Problem

- ► CEAP offers more expressiveness to prosumers: offers as piecewise linear functions
- ► CEAP can be cast as a Linear Program and hence solved by commercial solvers like CPLEX or Gurobi.
- ► CEAP's decentralised solver as an extension of RadPro.

Modeling

Perspectives

■ RADPRO's next steps

- 1. Cope with cyclic networks
- 2. Mechanism design issues (VCG paymens are feasible!)

25

References (contd)

GONEN, Turan (2014). Electric power distribution engineering. CRC press.

KUMAR, Akshat, Boi FALTINGS, and Adrian PETCU (2009). "Distributed Constraint Optimization with Structured

Resource Constraints". In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems - Volume 2. AAMAS '09. Budapest, Hungary: International Foundation for Autonomous Agents and Multiagent Systems, pp. 923–930. ISBN: 978-0-9817381-7-8. URL: http://dl.acm.org/citation.cfm?id=1558109.1558140.

DECHTER, R (2003). Constraint processing. Morgan Kauffman. URL:

 $\label{lem:http://books.google.com/books?hl=en&lr=&id=w4LG4EU0BCwC&oi=fnd&pg=PP2&dq=Constraint+processing&ots=ur_5y38Tbs&sig=la9V-uFZ0kGza4iD4HM11F5-1Bo.$

Solving EAP through MIP

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^{|P|} \sum_{l=1}^{n_{o_j}} x_j^l \cdot o_j^l \\ \text{subject to} & \sum_{l=1}^{n_{o_j}} x_j^l = 1 & \forall j \in P, 1 \leq l \leq n_{o_j} \\ & \sum_{i < j} y_{ij} - \sum_{k > j} y_{jk} = \sum_{l=1}^{n_{o_j}} x_j^l \cdot q_j^l & \forall j \in P \\ & y_{ij} \in D_{ij} & \forall (i,j) \in E \\ & x_i^l \in \{0,1\} & \forall j \in P, 1 \leq l \leq n_{o_i} \end{array}$$

 $x_i^I: j \text{ sells } I \text{ units}$

 n_{O_i} : maximum number of units in the offer

 y_{ij} : number of units exchanged between i and j

 $D_{ii} = [-c_{ii} .. c_{ii}]$: domain of c_{ii}