Defining a Continuous Marketplace for the Trading and Distribution of Energy in the Smart Grid

J. Cerquides1 \hspace{1cm} Gauthier Picard2 \hspace{1cm} J. A. Rodríguez-Aguilar1

1IIIA-CSIC

2LaHC UMR CNRS 5516, MINES Saint-Étienne
Smart grids: promises & expected outcomes

- New distribution rationale: **decentralized production**
 - Democratization of decentralized production: local balancing and reducing energy loss
- New context information: **energy awareness**
 - Frequently sensed data (consumption, production, pricing) impacts trading updates
- New trading rationale: **prosumption**
Smart grids: promises & expected outcomes

- New distribution rationale: decentralized production
 ▶ Democratization of decentralized production: local balancing and reducing energy loss

- New context information: energy awareness
 ▶ Frequently sensed data (consumption, production, pricing) impacts trading updates

- New trading rationale: prosumption

How to design a decentralized market for the trading and distribution of energy?
Example: energy trading scenario

- **Prosumers** ($j \in P$)
Example: energy trading scenario

- **Prosumers** ($j \in P$)
- **Offers** ($o_j : \mathbb{Z} \rightarrow \mathbb{R} \cup \{-\infty\}$)

<table>
<thead>
<tr>
<th>Bob</th>
<th>Carol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Price</td>
</tr>
<tr>
<td>0</td>
<td>11.5</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>11.5</td>
</tr>
<tr>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>-0.6</td>
</tr>
<tr>
<td>-3</td>
<td>-1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alice</th>
<th>Dave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Price</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>-2</td>
<td>-3.5</td>
</tr>
<tr>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>-3</td>
<td>-6</td>
</tr>
</tbody>
</table>
Example: energy trading scenario

- **Prosumers** \((j \in P)\)
- **Offers** \((o_j : \mathbb{Z} \rightarrow \mathbb{R} \cup \{-\infty\})\)
- **Links** \(\{i, j\}\) w/ some max capacity \((c_{ij})\)

Cerquides et al. Trading Energy in the Smart Grid
Example: energy trading scenario

How much energy to trade, and with whom, so that the overall benefit is maximized while the energy network’s capacity constraints are fulfilled?
Definition: energy allocation problem

The energy allocation problem (EAP) amounts to finding an allocation \(Y \) that maximizes the overall benefit \(\text{Value}(Y) \), with

\[
\text{Value}(Y) = \sum_{j \in P} v_j(Y_j)
\]

\[
v_j(Y_j) = o_j(\text{net}(Y_j))
\]

\[
\text{net}(Y_j) = \sum_{i \in \text{in}(j)} y_{ij} - \sum_{k \in \text{out}(j)} y_{jk}
\]

where \(y_{ij} \) stands for the number of units that prosumer \(i \) sells to prosumer \(j \) (bounded by \(c_{ij} \))
Example: energy trading scenario (solution)

\[Value(Y) = o_{\text{Alice}}^{-2} + o_{\text{Bob}}^{5} + o_{\text{Carol}}^{0} + o_{\text{Dave}}^{-3} = -3.5 + 11.5 + 0 - 6 = 2 \]
Distributed allocation techniques

- **Market-based**
 - **Double auction** (call market or CDA) where energy is traded on a day-ahead basis
 - Matching between supply and demand computed by **central** authority
 - Current market mechanisms disregard grid constraints → **Trading and distribution as decoupled activities**

- **Message passing**
 - Dynamic programming (**Miller, 2014; Kumar et al., 2009**)
 - Belief-propagation (**Miller, 2014**)

Cerquides et al. Trading Energy in the Smart Grid 6
Our contribution

- Exploit the **tree** structure of energy networks \((\text{Gonen}, 2014)\)
- Solve EAP as a distributed constraint optimization problem \((\text{DCOP})\)
- Design an **exact message passing** algorithm based on dynamic programming
 - \textbf{ACYCLIC-SOLVING} \((\text{Dechter}, 2003)\)
- Assess efficiently messages by exploiting the algebraic structure of offers and messages: \textbf{valuations}
Message passing solution

<table>
<thead>
<tr>
<th>q</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>-6</td>
</tr>
<tr>
<td>-3</td>
<td>-11</td>
</tr>
</tbody>
</table>

Carol
Message passing solution

Cerquides et al. Trading Energy in the Smart Grid
Message passing solution

Select and send valid offers

Cerquides et al.
Trading Energy in the Smart Grid
Message passing solution

<table>
<thead>
<tr>
<th>q</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>-6</td>
</tr>
<tr>
<td>-3</td>
<td>-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y_{dc}</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>-3</td>
<td>-6</td>
</tr>
</tbody>
</table>

Cerquides et al. Trading Energy in the Smart Grid
Message passing solution

select and send valid offers

Cerquides et al.
Trading Energy in the Smart Grid
Message passing solution

\[
\begin{array}{c|c}
q & v \\
--- & --- \\
2 & 1.75 \\
1 & 1.25 \\
0 & 0 \\
-2 & -6 \\
-3 & -11 \\
\end{array}
\]

Cerquides et al.

Trading Energy in the Smart Grid
Message passing solution

\[y_{bc} = -3 \]
\[y_{dc} = 3 \]

determine and send best assignment

Cerquides et al.
Trading Energy in the Smart Grid
Message passing solution

Cerquides et al. Trading Energy in the Smart Grid
Message passing solution

send best assignment

<table>
<thead>
<tr>
<th>q</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2</td>
<td>-6</td>
</tr>
<tr>
<td>-3</td>
<td>-11</td>
</tr>
</tbody>
</table>

\[y_{ab} = 2 \]

Carol

Bob

Dave

Alice

Cerquides et al.

Trading Energy in the Smart Grid
Message passing solution

determine best assignment

Cerquides et al.
Trading Energy in the Smart Grid
Message passing solution

solution is found!

Cerquides et al. Trading Energy in the Smart Grid
Message assessment

\[\mu_{j \rightarrow p_j}(y_{jp_j}) = \]

\[\max_{Y_{j-p_j}} \left(v_j(y_{jp_j}, Y_{j-p_j}) + \sum_{k \in \text{out}(j) \setminus \{p_j\}} \mu_{j \rightarrow k}(y_{jk}) + \sum_{i \in \text{in}(j)} \mu_{i \rightarrow j}(y_{ij}) \right) \]

- This is the computational hard point
- Computed in \(O((2C_j + 1)^{N_j}) \)
 - \(C_j \) is the capacity of the most powerful link
 - \(N_j \) is the number of neighbors of \(j \)

\(\Rightarrow \) Not applicable to dense networks
Message assessment

$$\mu_{j \rightarrow p_j}(y_{jp_j}) =$$

$$\max_{y_{j-p_j}} \left(v_j(y_{jp_j}, Y_{j-p_j}) + \sum_{k \in \text{out}(j) \setminus \{p_j\}} \mu_{j \rightarrow k}(y_{jk}) + \sum_{i \in \text{in}(j)} \mu_{i \rightarrow j}(y_{ij}) \right)$$

- This is the computational hard point
- Computed in $O((2C_j + 1)^{N_j})$
 - C_j is the capacity of the most powerful link
 - N_j is the number of neighbors of j

⇒ Not applicable to dense networks

⇒ Assess message more efficiently!
Algebra of valuations

- Take advantage of a particularity of the messages: **restricted capacity**
- Reformulate message assessment with 3 operations:
 - Restriction (linear):
 \[
 \alpha[D](k) = \begin{cases}
 \alpha(k) & k \in D \\
 -\infty & \text{otherwise}
 \end{cases}
 \]
 - Complement (linear):
 \[
 \overline{\alpha}(k) = \alpha(-k)
 \]
 - Aggregation (polynomial):
 \[
 (\alpha \cdot \beta)(k) = \max_{i,j} \alpha(i) + \beta(j) \\
 \text{subject to } k = i + j
 \]

\[
\mu_{j\rightarrow p_j} = \left(\overline{O}_j \cdot \prod_{k \in \text{out}(j) \setminus \{p_j\}} \mu_{j\rightarrow k} \cdot \prod_{i \in \text{in}(j)} \mu_{i\rightarrow j} \right) [-D_{jp_j}]
\]
RADPRO algorithm

$= \text{ACYCLIC-SOLVING} + \text{efficient message assessment}$

- **Global complexity of message assessment:** *polynomial* in $\mathcal{O}(nN^2_{\text{max}}C^2_{\text{max}})$
 - Number of message assessments in $\mathcal{O}(n(2C_{\text{max}} + 1)^{N_{\text{max}}})$
 - Single message assessment in $\mathcal{O}(N_jC_jn_{o_j} + N_j^2C_j^2)$

- **Communication complexity:** *linear* in $\mathcal{O}(nC_{\text{max}})$
 - $2n$ messages of max size $2C_{\text{max}} + 1$

- **Easily distributable**

<table>
<thead>
<tr>
<th></th>
<th>ACYCLIC-SOLVING</th>
<th>RADPRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>$\mathcal{O}(nC_{\text{max}})$</td>
<td>$\mathcal{O}(nC_{\text{max}})$</td>
</tr>
<tr>
<td>Computation</td>
<td>$\mathcal{O}(n(2C_{\text{max}} + 1)^{N_{\text{max}}})$</td>
<td>$\mathcal{O}(nN^2_{\text{max}}C^2_{\text{max}})$</td>
</tr>
</tbody>
</table>
Comparison with MIP solvers

RADPRO outperforms CPLEX & Gurobi
(more than one order of magnitude faster than CPLEX!)

Random networks (geometric distribution) with $C_j = \mathcal{N}(100, 50)$
Efficiency of message assessment

RADPRO outperforms ACYCLIC-SOLVING
(more than three orders of magnitude faster than ACYCLIC-SOLVING!)

![Graph showing speedup comparison between RADPRO and ACYCLIC-SOLVING](image)

Star-shaped networks (hubs) with $C_j \in \{10, 30, 50\}$ and $N_{max} \in [1..6]$
Scalability

RADOPro solves large-scale EAP with high branching factor (solving problems with capacity 100 and 100 neighbors in less than 1 min!)

Star-shaped networks (hubs) with $C_j \in \{10, 30, 50, 70, 100\}$ and $N_{max} \in [1..99]$
RadPro Limitations

- Offers are discrete: a prosumer can offer to buy either 3 KW for 6 EUR or 2 KW for 4 EUR, but not any amount of energy between 2 KW and 3 KW and pay 2 EUR per KW.
- Such offers provide a better representation of prosumers’ preferences.
- Our next goal is to extend the EAP to allow prosumers to communicate continuous (piecewise linear) utility functions.
Example: continuous energy trading scenario

- **Prosumers** $(j \in P)$
- **Offers** as *piecewise linear valuations*
- **Links** $(\{i, j\})$ w/ some max capacity (c_{ij})
Definition: continuous energy allocation problem

Given a set of prosumers P whose offers are piecewise linear valuations, the **continuous energy allocation problem** (CEAP) amounts to finding an allocation Y that maximizes the overall benefit $\text{Value}(Y)$, with

$$
\text{Value}(Y) = \sum_{i \in P} v_j(Y_j)
$$

$$
v_j(Y_j) = o_j(\text{net}(Y_j))
$$

$$
\text{net}(Y_j) = \sum_{i \in \text{in}(j)} y_{ij} - \sum_{k \in \text{out}(j)} y_{jk}
$$

where y_{ij} stands for the number of units that prosumer i sells to prosumer j (bounded by c_{ij})
Mapping the CEAP to a Linear Program

Decision variables per prosumer:

- interval valuation to select within a piecewise linear valuation
- amount of energy to trade within the chosen interval
Mapping the CEAP to a Linear Program

Decision variables per prosumer:
- interval valuation to select within a piecewise linear valuation
- amount of energy to trade within the chosen interval

Decision variable per link:
- amount of energy to trade between prosumers
Mapping the CEAP to a Linear Program

Decision variables per prosumer:

- interval valuation to select within a piecewise linear valuation
- amount of energy to trade within the chosen interval

Decision variable per link:

- amount of energy to trade between prosumers

Constraints:

- *Mutually exclusive intervals*: only an interval valuation per piecewise linear valuation
- *Energy balance*: amount of energy to trade per prosumer equals difference between input and output energy
- *Network capacity*: energy traded between prosumers respects links’ capacities
Example: continuous energy trading scenario

- **Prosumers** \((j \in P)\)
- **Offers** as \textbf{piecewise linear valuations}
- **Links** \((\{i, j\})\) w/ some max capacity \((C_{ij})\)

Cerquides et al.
Trading Energy in the Smart Grid
Mapping the CEAP to a Linear Program

LP that solves the continuous energy allocation problem:

\[
\begin{align*}
\text{maximize} & \quad \sum_{j=1}^{\left|P\right|} \sum_{k=1}^{\left|W_j\right|} a_{o_j}^k \cdot x_j^k + b_{o_j}^k \cdot z_j^k \\
\text{subject to} & \quad z_j^k \cdot l_{o_j}^k \leq x_j^k \leq z_j^k \cdot u_{o_j}^k \\
& \quad \sum_{k=1}^{\left|W_j\right|} z_j^k = 1 \\
& \quad \sum_{i<j} y_{ij} - \sum_{q>j} y_{jq} = \sum_{k=1}^{\left|W_j\right|} x_j^k \\
& \quad y_{ij} \in D_{ij} \\
& \quad z_j^k \in \{0, 1\} \\
& \quad x_j^k \in \mathbb{R} \\
& \quad \forall j \in P, 1 \leq k \leq |W_j|, \forall (i,j) \in E
\end{align*}
\]
CEAP: Current state

- Completed
 - Implementation of a MIP solver for the CEAP based on our LP mapping.
 - Extension of RadPro to provide a decentralised solver for the acyclic CEAP. This hinges on a valuation algebra whose valuations are piecewise linear functions.

- Ongoing
 - Empirical evaluation of both the centralised and decentralised solvers for CEAP.
Summary of contributions (I)

- **Energy Allocation Problem**
 - EAP is formulated as a **DCOP**

- **Valuation algebra**
 - Used to implement **messages** and **offers**
 - **Efficient** operations (aggregation, negation, selection)

- **RadPro algorithm**
 - Based on dynamic programming to solve **acyclic** EAP
 - **Outperforms** classical and DP-based solvers
 - Based on the valuation algebra for **polynomial message computation**
Summary of contributions (II)

Continuous Energy Allocation Problem

- CEAP offers more expressiveness to prosumers: offers as piecewise linear functions
- CEAP can be cast as a Linear Program and hence solved by commercial solvers like CPLEX or Gurobi.
- CEAP’s decentralised solver as an extension of RadPro.
Perspectives

- **RADPro’s next steps**
 1. Cope with **cyclic** networks
 2. Mechanism design issues (VCG payments are feasible!)
References (contd)

Solving EAP through MIP

maximize

\[\sum_{j=1}^{\left| P \right|} \sum_{l=1}^{n_{oj}} x_{j}^{l} \cdot o_{j} \]

subject to

\[\sum_{l=1}^{n_{oj}} x_{j}^{l} = 1 \quad \forall j \in P, 1 \leq l \leq n_{oj} \]

\[\sum_{i<j} y_{ij} - \sum_{k>j} y_{jk} = \sum_{l=1}^{n_{oj}} x_{j}^{l} \cdot q_{j} \quad \forall j \in P \]

\[y_{ij} \in D_{ij} \quad \forall (i, j) \in E \]

\[x_{j}^{l} \in \{0, 1\} \quad \forall j \in P, 1 \leq l \leq n_{oj} \]

\[x_{j}^{l} : j \text{ sells } l \text{ units} \]

\[n_{oj} : \text{maximum number of units in the offer} \]

\[y_{ij} : \text{number of units exchanged between } i \text{ and } j \]

\[D_{ij} = [-c_{ij}, c_{ij}] : \text{domain of } c_{ij} \]