
Self-Organized and Resilient Distribution
of Decisions over Dynamic Multi-Agent Systems

Pierre Rust1,2 Gauthier Picard1 Fano Ramparany2

1MINES Saint-Étienne, CNRS
Lab Hubert Curien UMR 5516

2Orange Labs

UMR • CNRS • 5516 • SAINT-ETIENNE

Distributed Decision-making over Dynamic Multi-Agent Systems

Decisions

Constraints
Optimization
Problem
Decisions ≡
variables

Distributed Dynamic

Rust, Picard, Ramparany Resilient distributed decisions 2

Distributed Decision-making over Dynamic Multi-Agent Systems

Decisions

Constraints
Optimization
Problem
Decisions ≡
variables

Distributed

Multi-agents
DCOP
Efficient distribution
of the decisions

Dynamic

Rust, Picard, Ramparany Resilient distributed decisions 2

Distributed Decision-making over Dynamic Multi-Agent Systems

Decisions

Constraints
Optimization
Problem
Decisions ≡
variables

Distributed

Multi-agents
DCOP
Efficient distribution
of the decisions

Dynamic

Agents leave / join
the system
Decisions must be
preserved
Decisions must be
migrated

Rust, Picard, Ramparany Resilient distributed decisions 2

Distribution of decision
DCOP 〈A,X ,D,C,µ〉
Several graph representations

Nodes in the graph = computations

Distribute computation on agents

x1

x2 x3

x4

(a) Simple constraint graph

x1

x2 x3

x4

(b) Factor graph

x1

f123x2 x3

x4f24

(c) Factor graph

Rust, Picard, Ramparany Resilient distributed decisions 3

Distributing computations

Computations

belong to an agent :
"natural" link,
problem characteristics

shared decisions
factors, in a factor graph:

a1

a2 a3

a4

x1

x2 x3

x4

Rust, Picard, Ramparany Resilient distributed decisions 4

Distributing computations

Computations

belong to an agent
shared decisions :
modeling artifact, with no obvious agent
relation (e.g. distributed meeting scheduling)

factors, in a factor graph:

a1

a2

a4

x1

x2 x3

x4

Rust, Picard, Ramparany Resilient distributed decisions 4

Distributing computations

Computations

belong to an agent
shared decisions :
modeling artifact, with no obvious agent
relation (e.g. distributed meeting scheduling)

factors, in a factor graph:

a2

a1

a4

x1

x2 x3

x4

Rust, Picard, Ramparany Resilient distributed decisions 4

Distributing computations

Computations

belong to an agent
shared decisions
factors, in a factor graph:
not representing a decision variable

a1

a2 a3

a4

x1

f123x2 x3

x4f24

Rust, Picard, Ramparany Resilient distributed decisions 4

Distributing computations

Computations

belong to an agent
shared decisions
factors, in a factor graph:
not representing a decision variable

a1

a2 a3

a4

x1

f123x2 x3

x4f24

Rust, Picard, Ramparany Resilient distributed decisions 4

Distributing computations

Distribution impacts the system characteristics

speed
communication load
hosting costs / preferences

Optimal distribution

problem dependent
optimization problem: find the best distribution for your problem criteria
determining the optimal distribution ≡ graph partitioning
NP-hard in general [BOULLE, 2004]

Rust, Picard, Ramparany Resilient distributed decisions 5

Optimal distribution definition

Generic definition
Meet agents’ capacity limit & computation footprint

∀am∈A,
∑
xi∈D

weigh(xi)·xmi ≤cap(am) (1)

Minimize communication load
Minimize hosting costs

Rust, Picard, Ramparany Resilient distributed decisions 6

Optimal distribution definition

Generic definition

Meet agents’ capacity limit
Minimize communication load :
with different communication costs for different edges

minimize
xm
i

∑
(i,j)∈D

∑
(m,n)∈A2

com(i,j,m,n)·αmn
ij (1)

Minimize hosting costs

Rust, Picard, Ramparany Resilient distributed decisions 6

Optimal distribution definition

Generic definition

Meet agents’ capacity limit
Minimize communication load
Minimize hosting costs :
can be used to model preferences, operational costs, etc.

minimize
xm
i

∑
(xi,am)∈X×A

xmi ·host(am,xi) (1)

Rust, Picard, Ramparany Resilient distributed decisions 6

Distributing Computations

Optimal distribution

NP-hard, but can be solved with branch-and-cut
LP solvers are very good at this
Useful to bootstrap a system
Yet, only possible for relatively small instances
When not solvable, still gives us a metrics to compare heuristics

Rust, Picard, Ramparany Resilient distributed decisions 7

Dynamic and Open System

New agents may join the system
Agents may leave the system at any
time

a3

a1

a2

a4

x1

x2

x4

fA x3

fB

Rust, Picard, Ramparany Resilient distributed decisions 8

Dynamic and Open System

New agents may join the system
I Use the extra help / computing

power ?
I Migrate computations ?

Agents may leave the system at any
time

a3

a1

a2

a4

a5

x1

x2

x4

fA x3

x5

fB

Rust, Picard, Ramparany Resilient distributed decisions 8

Dynamic and Open System

New agents may join the system
I Use the extra help / computing

power ?
I Migrate computations ?

Agents may leave the system at any
time

a3

a1

a2

a5

a4

x1

x2

x4

fA x3

x5fB

Rust, Picard, Ramparany Resilient distributed decisions 8

Dynamic and Open System

New agents may join the system
Agents may leave the system at any
time

a3

a1

a2

a5

a4

a3

x1

x2

x4

fA x3

x5fB

Rust, Picard, Ramparany Resilient distributed decisions 8

Dynamic and Open System

New agents may join the system
Agents may leave the system at any
time

I How to ensure that the system still
works as expected ?

I Migrate computation to remaining
agents

a5

a4

a1

a2

x1

x2

x4

x5fB

fA

x3

Rust, Picard, Ramparany Resilient distributed decisions 8

Dynamic and Open System

New agents may join the system
Agents may leave the system at any
time

I How to ensure that the system still
works as expected ?

I Migrate computation to remaining
agents

a5

a4

a2 a1

x1

x2

x4

x5fB

fA

x3

Rust, Picard, Ramparany Resilient distributed decisions 8

k-resilience

Definition (k-resilience)
Given a set of agents A, a set of computations X, and a distribution µ, the system
is k-resilient if for any subset F ⊂A,|F |≤k, a new distribution µ′ :X→A\F exists.

Implementation

Having decisions’ definition available : replication of computations
Migrate orphaned computations : selection of candidate

Rust, Picard, Ramparany Resilient distributed decisions 9

Replication for k-resilience

Replica placement

Replicate computations on k agents
Respect agents’ capacity
Optimize for communication and hosting costs

Optimal Replication ?

Huge problem space ≡ quadratic
multiple knapsack problem (QMKP) [SARAÇ and SIPAHIOGLU, 2014], NP-hard.
No clear definition of what would be optimal !

Rust, Picard, Ramparany Resilient distributed decisions 10

Replication for k-resilience (cont.)

DPRM Heuristic

Use the computation graph: communication costs
Add extra nodes to account for hosting costs
Use Iterative Lengthening / Uniform Cost Search on the graph
Distributed implementation
Initiated by each agent, for each of its computations to replicate

Rust, Picard, Ramparany Resilient distributed decisions 11

Distributed Replica Placement Method

a1

a2 a3

a4

route(a1,a2)=1

route(a2,a3)=3

route(a2,a4)=1

route(a1,a4)=1

Rust, Picard, Ramparany Resilient distributed decisions 12

Distributed Replica Placement Method

a1

a2 a3

a4

ã2 ã3

ã4

host(a2,xi)=1 host(a3,xi)=1

host(a4,xi)=5

route(a1,a2)=1

route(a2,a3)=3

route(a2,a4)=1

route(a1,a4)=1

Rust, Picard, Ramparany Resilient distributed decisions 12

Distributed Replica Placement Method

a1

a2 a3

a4

ã2 ã3

ã4

host(a2,xi)=1 host(a3,xi)=1

host(a4,xi)=5

route(a1,a2)=1

route(a2,a3)=3

route(a2,a4)=1

route(a1,a4)=1

Rust, Picard, Ramparany Resilient distributed decisions 12

Distributed Replica Placement Method

a1

a2 a3

a4

ã2 ã3

ã4

host(a2,xi)=1 host(a3,xi)=1

host(a4,xi)=5

route(a1,a2)=1

route(a2,a3)=3

route(a2,a4)=1

route(a1,a4)=1

Rust, Picard, Ramparany Resilient distributed decisions 12

Distributed Replica Placement Method

a1

a2 a3

a4

ã2 ã3

ã4

host(a2,xi)=1 host(a3,xi)=1

host(a4,xi)=5

route(a1,a2)=1

route(a2,a3)=3

route(a2,a4)=1

route(a1,a4)=1

Rust, Picard, Ramparany Resilient distributed decisions 12

Distributed Replica Placement Method

a1

a2 a3

a4

ã2 ã3

ã4

host(a2,xi)=1 host(a3,xi)=1

host(a4,xi)=5

route(a1,a2)=1

route(a2,a3)=3

route(a2,a4)=1

route(a1,a4)=1

Rust, Picard, Ramparany Resilient distributed decisions 12

Distributed Replica Placement Method

a1

a2 a3

a4

ã2 ã3

ã4

host(a2,xi)=1 host(a3,xi)=1

host(a4,xi)=5

route(a1,a2)=1

route(a2,a3)=3

route(a2,a4)=1

route(a1,a4)=1

Rust, Picard, Ramparany Resilient distributed decisions 12

Distributed Replica Placement Method

a1

a2 a3

a4

ã2 ã3

ã4

host(a2,xi)=1 host(a3,xi)=1

host(a4,xi)=5

route(a1,a2)=1

route(a2,a3)=3

route(a2,a4)=1

route(a1,a4)=1

Rust, Picard, Ramparany Resilient distributed decisions 12

Distributed repair - selecting candidates

Repairing by migrating computations

Orphaned computations Xc: hosted on a departed agent
Candidate agents Ac:
agents possessing replicas of orphaned computation (≤k for each computation)
Select exactly one candidate agent for each orphaned computation
Respect the agent’s capacity
Select the candidate that minimizes communication and hosting costs

Like the initial distribution problem, but on a very restricted subset of the graph

Rust, Picard, Ramparany Resilient distributed decisions 13

Distributed repair - selecting candidates

a1

a2

a3

a4

x1 x2

x3 x4 x5

x6 x7

x6 x10

DCOP with 9 computations distributed on
4 agents

Replicas for x6 hosted on a2, a4
Replicas for x7 hosted on a1, a4

Rust, Picard, Ramparany Resilient distributed decisions 14

Distributed repair - selecting candidates

a1

a2

a3

a4

x1 x2

x3 x4 x5

x6 x7

x6 x10

7

7

6

6

DCOP with 9 computations distributed on
4 agents

Replicas for x6 hosted on a2, a4
Replicas for x7 hosted on a1, a4

Rust, Picard, Ramparany Resilient distributed decisions 14

Distributed repair - selecting candidates

a1

a2

a3

a4

a3

x17

x47

x26

x46

x1 x2

x3 x4 x5

x6 x7

x6 x10

Agent a3 leaves the system
x6 and x7 must be moved
Candidate agents :
x6 : { a2, a4 }
x7 : { a1, a4 }
Binary variables for each replica : xmi
Model the selection as an
optimization problem

Rust, Picard, Ramparany Resilient distributed decisions 14

Distributed repair - selecting candidates

a1

a2

a4

x17

x47

x26

x46

x1 x2

x3 x4 x5

x6 x10

Model the selection as an optimization
problem
All orphaned computation must be
hosted: ∑

am∈Ai
c

xmi =1 (2)

Rust, Picard, Ramparany Resilient distributed decisions 14

Distributed repair - selecting candidates

a1

a2

a4

x17

x47

x26

x46

x1 x2

x3 x4 x5

x6 x10

Capacity constraints∑
xi∈Xm

c

weigh(xi)·xmi +∑
xj∈µ−1(am)\Xc

weigh(xj)

≤cap(am) (2)

Rust, Picard, Ramparany Resilient distributed decisions 14

Distributed repair - selecting candidates

a1

a2

a4

x17

x47

x26

x46

x1 x2

x3 x4 x5

x6 x10

Minimize hosting costs∑
xi∈Xm

c

host(am,xi)·xmi (2)

Rust, Picard, Ramparany Resilient distributed decisions 14

Distributed repair - selecting candidates

a1

a2

a4

x17

x47

x26

x46

x1 x2

x3 x4 x5

x6 x10

Minimize communication constraints∑
(xi,xj)∈Xm

c ×Ni\Xc

xmi ·com(i,j,m,µ−1(xj))

+
∑

(xi,xj)∈Xm
c ×Ni∩Xc

xmi ·
∑
an∈Aj

c

xnj ·com(i,j,m,n))

(2)

Rust, Picard, Ramparany Resilient distributed decisions 14

Solving the selection problem

Optimization problem

The candidate selection is modeled as a DCOP
We use a DCOP to repair the distribution of the original DCOP !

I original DCOP : variables = decisions for our problem
I repair DCOP : variables = candidate selection

Resolution

MGM2
fast, lightweight, monotonous
good behavior with soft / hard constraints
no issue with distribution in that case

Rust, Picard, Ramparany Resilient distributed decisions 15

Experimental results - IoT-like setup

Problem
100 variables, Domain size 10
Constraints graph: scale-free graph
(Barabási–Albert), binary constraints
Uniform random cost functions

Infrastructure
100 agents
Hosting costs: xi prefers ai random
Route costs: respect the scale free
distribution of the graph

Disturbance scenario
every 30 seconds, 3 agents are
removed

The original problem is solved using maxsum, the repair problems with MGM-2
Generate 20 instances, 5 run each
Solve with and without disturbance

Rust, Picard, Ramparany Resilient distributed decisions 16

Experimental results
Average cost of the solution

0 30 60 90 120 150 180 210 240
time (s)

5000

6000

7000

8000

9000

co
st

average cost with perturbation
average cost without perturbation

Figure: Average cost of MaxSum solution at runtime, on scale-free DCOPs, with (blue) and
without perturbation (red).

Rust, Picard, Ramparany Resilient distributed decisions 17

Experimental results
Average cost of the distribution

1 2 3 4 5 6
400

600

800

1000

1200

1400

1600

1800
global cost
communication cost
hosting cost

Figure: Cost of computation distribution after each event

Rust, Picard, Ramparany Resilient distributed decisions 18

Conclusion

Summary

Definition of an optimal distribution of computations on a set of agents
Distributed algorithm for computation replication (stateless)
Distributed repair method, based on a DCOP

Future work

Relax the requirements on the DCOP algorithm used for the original problem
Test with other algorithms (only max-sum at the moment)
More experimentations with other problem domain

I more graph topologies (grid, random, etc.)
I other types of problem (meeting scheduling, target tracking, etc)
I non-DCOP computation graph

Rust, Picard, Ramparany Resilient distributed decisions 19

Self-Organized and Resilient Distribution
of Decisions over Dynamic Multi-Agent Systems

Pierre Rust1,2 Gauthier Picard1 Fano Ramparany2

1MINES Saint-Étienne, CNRS
Lab Hubert Curien UMR 5516

2Orange Labs

UMR • CNRS • 5516 • SAINT-ETIENNE

Rust, Picard, Ramparany Resilient distributed decisions 20

	Distribution
	Dynamic
	k-Reselience

