Self-Organized and Resilient Distribution
of Decisions over Dynamic Multi-Agent Systems

Pierre Rust!'? Gauthier Picard! Fano Ramparany?

IMINES Saint-Etienne, CNRS
Lab Hubert Curien UMR 5516

2QOrange Labs

M|NES) HUBERT CURIEN @ CONNECTED

Saint-Etienne INTELLIGENCH

Distributed Decision-making over Dynamic Multi-Agent Systems

Decisions Distributed Dynamic
m Constraints
Optimization
Problem

m Decisions =
variables

Rust, Picard, Ramparany Resilient distributed decisions

Distributed Decision-making over Dynamic Multi-Agent Systems

Decisions Distributed Dynamic
m Constraints m Multi-agents
Optimization = DCOP
ProchJI(.am m Efficient distribution
m Decisions = of the decisions
variables

Rust, Picard, Ramparany Resilient distributed decisions

Distributed Decision-making over Dynamic Multi-Agent Systems

Decisions Distributed Dynamic
m Constraints m Multi-agents m Agents leave / join
Optimization m DCOP the system
Problem - e -
o m Efficient distribution m Decisions must be
m Decisions = of the decisions preserved
variables

m Decisions must be
migrated

Rust, Picard, Ramparany Resilient distributed decisions

Distribution of decision
m DCOP (A,X,D.C.1)

m Several graph representations

m Nodes in the graph = computations

m Distribute computation on agents

Io €T3

(a) Simple constraint graph

Rust, Picard, Ramparany

T2

[
L]

(b) Factor graph

Resilient distributed decisions

T3

T2

f123

(c) Factor graph

w

Distributing computations

Computations

m belong to an agent :
"natural” link,

problem characteristics

Rust, Picard, Ramparany

Resilient distributed decisions

a2

)

ai

a4

as

€3

Distributing computations

Computations

m belong to an agent

m shared decisions :
modeling artifact, with no obvious agent
relation (e.g. distributed meeting scheduling)

Rust, Picard, Ramparany Resilient distributed decisions

)

ai

a2

a4

€3

Distributing computations

Computations

m belong to an agent

m shared decisions :
modeling artifact, with no obvious agent
relation (e.g. distributed meeting scheduling)

Rust, Picard, Ramparany

Resilient distributed decisions

a2

)

a

a4

€3

Distributing computations

Computations

m belong to an agent
m shared decisions

m factors, in a factor graph:
not representing a decision variable

Rust, Picard, Ramparany Resilient distributed decisions

a2

a

as

f123

Q4

S

Distributing computations

Computations

m belong to an agent
m shared decisions

m factors, in a factor graph:
not representing a decision variable

Rust, Picard, Ramparany Resilient distributed decisions

a

as

f123

S

Distributing computations

Distribution impacts the system characteristics

m speed
m communication load
m hosting costs / preferences

Optimal distribution

m problem dependent
m optimization problem: find the best distribution for your problem criteria

m determining the optimal distribution = graph partitioning
NP-hard in general [BouLLE, 2004]

Rust, Picard, Ramparany Resilient distributed decisions

Optimal distribution definition

Generic definition
m Meet agents’ capacity limit & computation footprint

Va, €A, Z weigh(z;) 2" <cap(an,)
;€D

m Minimize communication load
m Minimize hosting costs

Rust, Picard, Ramparany Resilient distributed decisions

Optimal distribution definition

Generic definition
m Meet agents’ capacity limit

m Minimize communication load :
with different communication costs for different edges

minl;pize Z Z com(i,j,m,n)-a;;"
' (i,5)€D(m,n)EA?

m Minimize hosting costs

Rust, Picard, Ramparany Resilient distributed decisions

Optimal distribution definition

Generic definition
m Meet agents’ capacity limit
m Minimize communication load
m Minimize hosting costs :

can be used to model preferences, operational costs, etc.

minimize E 2" -host(am,,z;)
xl™
(zi,am)EX XA

Rust, Picard, Ramparany Resilient distributed decisions

Distributing Computations

Optimal distribution

m NP-hard, but can be solved with branch-and-cut
LP solvers are very good at this

m Useful to bootstrap a system
m Yet, only possible for relatively small instances
m When not solvable, still gives us a metrics to compare heuristics

Rust, Picard, Ramparany Resilient distributed decisions

Dynamic and Open System

Rust, Picard, Ramparany

Resilient distributed decisions

a1
as asg
T2 fa
a4
z

@

Dynamic and Open System

m New agents may join the system

» Use the extra help / computing

power ?
» Migrate computations ?

Rust, Picard, Ramparany

Resilient distributed decisions

ay
ao asg
T2 fa
a4
z
as
Ts

@

Dynamic and Open System

m New agents may join the system

» Use the extra help / computing

power ?
» Migrate computations ?

Rust, Picard, Ramparany

Resilient distributed decisions

ay
ao asg
Mj fa

a4

X4

fB‘@aE)

@

Dynamic and Open System

m New agents may join the system

m Agents may leave the system at any
time

Rust, Picard, Ramparany Resilient distributed decisions

ai

@

ao asg
5”9 fa

a4

T4
fB ——— : as

Dynamic and Open System

m New agents may join the system
m Agents may leave the system at any
time
» How to ensure that the system still
works as expected ?
» Migrate computation to remaining
agents

Rust, Picard, Ramparany Resilient distributed decisions

a

fB

Dynamic and Open System

m New agents may join the system
m Agents may leave the system at any
time
» How to ensure that the system still
works as expected ?
» Migrate computation to remaining
agents

Rust, Picard, Ramparany Resilient distributed decisions

a2

ai

fB

k-resilience

Definition (k-resilience)
Given a set of agents A, a set of computations X, and a distribution p, the system
is k-resilient if for any subset F'C A,|F| <k, a new distribution 1/: X — A\ F exists.

Implementation

m Having decisions’ definition available : replication of computations
m Migrate orphaned computations : selection of candidate

Rust, Picard, Ramparany Resilient distributed decisions

Replication for k-resilience

Replica placement

m Replicate computations on k agents
m Respect agents’ capacity
m Optimize for communication and hosting costs

Optimal Replication ?

m Huge problem space = quadratic
multiple knapsack problem (QMKP) [SarAc and SipaHIOGLU, 2014], NP-hard.

m No clear definition of what would be optimal !

Rust, Picard, Ramparany Resilient distributed decisions

Replication for k-resilience (cont.)

DPRM Heuristic

m Use the computation graph: communication costs

m Add extra nodes to account for hosting costs

m Use lterative Lengthening / Uniform Cost Search on the graph
m Distributed implementation

m Initiated by each agent, for each of its computations to replicate

Rust, Picard, Ramparany Resilient distributed decisions

Distributed Replica Placement Method

route(az,a3)=3
as

route(az,as)=1

route(ay,az2)=1

route(ai,as)=1

Rust, Picard, Ramparany Resilient distributed decisions

Distributed Replica Placement Method

host(az,z;)=1 - == host(ag,z;)=1

’
’ ’

{ route(a2,a3)=3 ¢
as

route(az,as)=1

route(a,az)=1

route(a,as)=1

host(a4,z;) =5 \\,—\\
L ay)

Rust, Picard, Ramparany Resilient distributed decisions

Distributed Replica Placement Method

host(az,z;)=1 - ==’ host(az,z;)=1

’
’ ’

{ route(a2,a3)=3 ¢
as

route(ag,as)=1

route(a,az)=1

route(a,as)=1

host(a4,z;) =5 \\,—\\
L Qg)

Rust, Picard, Ramparany Resilient distributed decisions

s

s

. as |
PN 7/

Distributed Replica Placement Method

host(az,z;)=1 - ==’ host(az,z;)=1

’
’ ’

{ route(a2,a3)=3 ¢
as

route(ag,as)=1

route(a,az)=1

route(a,as)=1

host(a4,z;) =5 \\,—\\
L Qg)

Rust, Picard, Ramparany Resilient distributed decisions

s

s

. as |
PN 7/

Distributed Replica Placement Method

1

\ &2 J
- host(az,z;)=1

host(ag,z;)=1

route(a,az)=1

route(a,as)=1

host(a4,z;) =5 \\,—\\
L Qg)

Rust, Picard, Ramparany Resilient distributed decisions

s
’

route(az,a3) =3 ¢
as

route(ag,as)=1

s

. as |
PN 7/

Distributed Replica Placement Method

1

\ &2 J
- host(az,z;)=1

host(ag,z;)=1

route(a,az)=1

route(a,as)=1

host(a4,z;) =5 \\,—\\
L Qg)

Rust, Picard, Ramparany Resilient distributed decisions

s
’

route(az,a3) =3 ¢
as

route(ag,as)=1

s

. as |
PN 7/

Distributed Replica Placement Method

1

\ &2 J
- host(az,z;)=1

host(ag,z;)=1

route(a,az)=1

route(a,as)=1

host(a4,z;) =5 \\,—\\
L Qg)

Rust, Picard, Ramparany Resilient distributed decisions

s
’

route(az,a3) =3 ¢
as

route(ag,as)=1

s

. as |
PN 7/

Distributed Replica Placement Method

S -~
L G2) \ a3)

7/ 7/
= host(az,z;)=1

host(ag,z;)=1

route(az,a3) =3

route(a,az)=1
route(ag,as)=1
route(a,as)=1

host(a4,z;) =5 \\,—\\
L Qg)

Rust, Picard, Ramparany Resilient distributed decisions

Distributed repair - selecting candidates

Repairing by migrating computations

m Orphaned computations X.: hosted on a departed agent

m Candidate agents A.:
agents possessing replicas of orphaned computation (< k for each computation)

m Select exactly one candidate agent for each orphaned computation
m Respect the agent’s capacity
m Select the candidate that minimizes communication and hosting costs

Like the initial distribution problem, but on a very restricted subset of the graph

Rust, Picard, Ramparany Resilient distributed decisions 13

Distributed repair - selecting candidates

g —c—C)
@ ()
JOSD

[\

Rust, Picard, Ramparany

DCOP with 9 computations distributed on
4 agents

Resilient distributed decisions

Distributed repair - selecting candidates

g —c—C)
@ ()
JOSD

[\

Rust, Picard, Ramparany

DCOP with 9 computations distributed on
4 agents

. m Replicas for z¢ hosted on as, ay4
m Replicas for z7 hosted on a1, a4

ON _

Resilient distributed decisions

Distributed repair - selecting candidates

[\

g —c—C)
% ()
JOSD

Rust, Picard, Ramparany

Agent a3 leaves the system
m z6 and x7 must be moved

. m Candidate agents :

x6 1 { a2, as }

z7 i {ai, as}
m Binary variables for each replica : z"

m Model the selection as an
optimization problem

Resilient distributed decisions

Distributed repair - selecting candidates

“ @@
% (=)
“ ()

Rust, Picard, Ramparany

Model the selection as an optimization

problem
. All orphaned computation must be
hosted:

Resilient distributed decisions

Distributed repair - selecting candidates

Capacity constraints

Z weigh(z;)-z]"+

8= ©
r,EXM
Z weigh(z;)
« (@=E=E)

zjepHam)\Xe

<cap(am)

HORONENON

Rust, Picard, Ramparany Resilient distributed decisions

(@)

Distributed repair - selecting candidates

Minimize hosting costs

ay e @ ‘ Z host(a,,z;)-z}" (2)
. T, €XM
« (@=E=E)

HORONENON

Rust, Picard, Ramparany Resilient distributed decisions

Distributed repair - selecting candidates

Minimize communication constraints

o @ @ . > - com(i,j,m.u ()
. (Ii,l‘j)GXZ"XNi\XC

fY Y com(iimm)
a9 @ @ @ (xi,wj)EXg”XNiﬁXc (lnEAZ

(@)

HOSONENON

Rust, Picard, Ramparany Resilient distributed decisions 14

Solving the selection problem

Optimization problem

m The candidate selection is modeled as a DCOP
m We use a DCORP to repair the distribution of the original DCOP !

» original DCOP : variables = decisions for our problem
» repair DCOP : variables = candidate selection

Resolution

= MGM2

m fast, lightweight, monotonous

m good behavior with soft / hard constraints
®m no issue with distribution in that case

Rust, Picard, Ramparany Resilient distributed decisions

Experimental results - [oT-like setup

Problem Infrastructure
m 100 variables, Domain size 10 m 100 agents
m Constraints graph: scale-free graph m Hosting costs: z; prefers a; random
(Barabasi—Albert), binary constraints m Route costs: respect the scale free
m Uniform random cost functions distribution of the graph

Disturbance scenario

m every 30 seconds, 3 agents are
removed

The original problem is solved using maxsum, the repair problems with MGM-2
Generate 20 instances, 5 run each
Solve with and without disturbance

Experimental results
Average cost of the solution

—— average cost with perturbation
—— average cost without perturbation

9000 A
8000 4 4 4 4 =1 - .
|

@
o
© 7000 -

6000

5000

0 30 60 90 120 150 180 210 240
time (s)

Figure: Average cost of MaxSum solution at runtime, on scale-free DCOPs, with (blue) and
without perturbation (red).

Rust, Picard, Ramparany Resilient distributed decisions 17

Experimental results

Average cost of the distribution

—— global cost
—— communication cost
1800 1 — hosting cost

1600
1400 A
1200
1000 A

800 -

| %._1—_'_—‘ —_
600 N = T -
T

400 -

Figure: Cost of computation distribution after each event

Rust, Picard, Ramparany Resilient distributed decisions

Conclusion

Summary

m Definition of an optimal distribution of computations on a set of agents
m Distributed algorithm for computation replication (stateless)
m Distributed repair method, based on a DCOP

Future work

m Relax the requirements on the DCOP algorithm used for the original problem
m Test with other algorithms (only max-sum at the moment)

m More experimentations with other problem domain

» more graph topologies (grid, random, etc.)
» other types of problem (meeting scheduling, target tracking, etc)
» non-DCOP computation graph

Rust, Picard, Ramparany Resilient distributed decisions

Self-Organized and Resilient Distribution
of Decisions over Dynamic Multi-Agent Systems

Pierre Rust!'? Gauthier Picard! Fano Ramparany?

IMINES Saint-Etienne, CNRS
Lab Hubert Curien UMR 5516

2QOrange Labs

M|NES) HUBERT CURIEN @ CONNECTED

Saint-Etienne INTELLIGENCH

Rust, Picard, Ramparany Resilient distributed decisions

	Distribution
	Dynamic
	k-Reselience

