Some kernels for computer experiments

Olivier Roustant

École Nationale Supérieure des Mines de Saint-Étienne

2011/12 – ERCIM
Outline

1 Methods: ANOVA kernels for the global sensitivity analysis of Kriging metamodels
 - The aim: To perform the global SA without the curse of recursion
 - Global SA of "1+0" separable functions
 - From "1+0" separable functions to ANOVA kernels via RKHS
 - The probabilistic interpretation

2 Software: New kernel classes in R packages
 - Block-additive kernels (R package "fanovaGraph")
 - Non-stationary kernels based on scaling transform [DiceKriging]

3 References
Associated collaborators

- Joint work with N. Durrande, D. Ginsbourger and L. Carraro

Methods

- Joint work with N. Durrande, D. Ginsbourger and L. Carraro

Software

- Block-additive kernels: Joint works with J. Fruth, T. Muehlenstaedt, S. Kuhnt and L. Carraro.
- Scaling transform: Joint work with D. Ginsbourger and Y. Deville.
FANOVA decomposition and recursion issue

Property and definition (see Hoeffding [7] or Efron and Stein [5])

Let $x_1, ..., x_d$ be independent random variables, with distribution $d\nu(x) = d\nu_1(x_1) \ldots d\nu_d(x_d)$ and f an integrable function. Then f admits a unique "FANOVA" decomposition:

$$f(x) = \mu_0 + \sum_{j=1}^{d} \mu_j(x_j) + \sum_{j<k} \mu_{j,k}(x_j, x_k) + \sum_{j<k<l} \mu_{j,k,l}(x_j, x_k, x_l) + \cdots + \mu_{1,\ldots,d}(x_1, \ldots, x_d)$$

where each term is centered and satisfies $E(\mu_I(x_I)|x_J) = 0$ for all $J \subset I$.

FANOVA decomposition and recursion issue

Property and definition (see Hoeffding [7] or Efron and Stein [5])

Let x_1, \ldots, x_d be independent random variables, with distribution $d\nu(x) = d\nu_1(x_1) \ldots d\nu_d(x_d)$ and f an integrable function. Then f admits a unique "FANOVA" decomposition:

$$f(x) = \mu_0 + \sum_{j=1}^{d} \mu_j(x_j) + \sum_{j<k} \mu_{j,k}(x_j, x_k)$$

$$+ \sum_{j<k<l} \mu_{j,k,l}(x_j, x_k, x_l) + \cdots + \mu_{1,\ldots,d}(x_1, \ldots, x_d)$$

where each term is centered and satisfies $E(\mu_I(x_l) | x_J) = 0$ for all $J \subsetneq I$.

Orthogonality

In particular the μ_I's are orthogonal.
Context: FANOVA decomposition and recursion issue

Recursion issue

We have:

- \(\mu_0 = E[f(x)] \)
- \(\mu_k(x_k) = E[f(x)|x_k] - \mu_0 \)
- \(\mu_{j,k}(x_j, x_k) = E[f(x)|x_j, x_k] - \mu_j(x_j) - \mu_k(x_k) - \mu_0 \)
- \(\ldots \)

In general, the terms are expressed recursively by:

\[
\mu_J(x_J) = E[f(x)|x_J] - \sum_{J' \subsetneq J} \mu_{J'}(x_{J'})
\]
Context: FANOVA decomposition and recursion issue

Recursion issue

We have:

\[\mu_0 = E[f(x)] \]
\[\mu_k(x_k) = E[f(x)|x_k] - \mu_0 \]
\[\mu_{j,k}(x_{j,k}) = E[f(x)|x_j, x_k] - \mu_j(x_j) - \mu_k(x_k) - \mu_0 \]
\[\ldots \]

In general, the terms are expressed **recursively** by:

\[\mu_J(x_J) = E[f(x)|x_J] - \sum_{J' \subsetneq J} \mu_{J'}(x_{J'}) \]

Variance decomposition and Sobol indices

Orthogonality implies: \(V = \sum V_i \), with \(V_i = var(\mu_i(x_i)) \)

The **Sobol indices** are defined as variance ratios \(S_i := V_i/V \)
The aim

Global SA of the Kriging mean

- When the kernel is separable, i.e. \(k(x, y) = \prod_{i=1}^{d} k^i(x_i, y_i) \), the global SA of the Kriging mean is performed analytically ([9], [2])
- However, as for the definition, we face the curse of recursion
The aim

Global SA of the Kriging mean
- When the kernel is separable, i.e. $k(x, y) = \prod_{i=1}^{d} k^i(x_i, y_i)$, the global SA of the Kriging mean is performed analytically ([9], [2])
- However, as for the definition, we face the curse of recursion

The problem
- To find a kernel s.t. the SA of the Krig. mean is done without recursion
A favorable case: "1+0" separable functions

Proposition (at least: Sobol, 2003 [10])

Let $\nu = \nu_1 \ldots \nu_d$ a measure on \mathbb{R}^d, and f be a separable function:

$$f(x) = \prod_{i=1}^{d} (1 + f_i(x_i))$$

such that the f_i’s are zero-mean functions: $\int f_i(x_i) d\nu_i(x_i) = 0$. Then:
A favorable case: "1+0" separable functions

Proposition (at least: Sobol, 2003 [10])

Let $\nu = \nu_1 \ldots \nu_d$ a measure on R^d, and f be a separable function:

$$f(x) = \prod_{i=1}^{d} (1 + f_i(x_i))$$

such that the f_i's are zero-mean functions: $\int f_i(x_i) d\nu_i(x_i) = 0$. Then:

- The FANOVA decomposition is obtained - without any recursion - by expanding the product: $\mu_I(x_I) = \prod_{i \in I} f_i(x_i)$
A favorable case: "1+0" separable functions

Proposition (at least: Sobol, 2003 [10])

Let $\nu = \nu_1 \ldots \nu_d$ a measure on \mathbb{R}^d, and f be a separable function:

$$f(x) = \prod_{i=1}^{d} (1 + f_i(x_i))$$

such that the f_i’s are zero-mean functions: $\int f_i(x_i) d\nu_i(x_i) = 0$. Then:

- The FANOVA decomposition is obtained - without any recursion - by expanding the product: $\mu_I(x_I) = \prod_{i \in I} f_i(x_i)$
- The Sobol indices are given analytically by V_I/V, where:

$$V_I = \prod_{i \in I} \int f_i^2(x_i) d\nu_i(x_i) \quad \text{and} \quad V = \prod_{i=1}^{d} \left(1 + \int f_i^2(x_i) d\nu_i(x_i) \right) - 1$$
Sensitivity analysis of the Kriging mean

Consider the Kriging mean $m(x) = k(x)^t K^{-1} F$, with:

- $k(x) := (k(x, x^{(j)}))_{1 \leq j \leq n}$: cov. between x and design points
- $K := (k(x^{(j)}, x^{(j')}))_{1 \leq j, j' \leq n}$: covariances between design points

Then, with $\alpha = K^{-1} F$, we have: $m(.) = \sum_{j=1}^{n} \alpha_j k(., x^{(j)})$
Sensitivity analysis of the Kriging mean

Consider the Kriging mean \(m(x) = k(x)^t K^{-1} F \), with:
- \(k(x) := (k(x, x^{(j)}))_{1 \leq j \leq n} \) : covariance between \(x \) and design points
- \(K := (k(x^{(j)}, x^{(j')})_{1 \leq j, j' \leq n} \) : covariances between design points

Then, with \(\alpha = K^{-1} F \), we have:
\[
m(.) = \sum_{j=1}^{n} \alpha_j k(., x^{(j)})
\]

Sufficient condition (SC) to avoid recursion

To find \(k \) s.t. all the \(k(., y) \) are "1+0" separable functions
From functions to kernels

RKHS - Main facts [case of real-valued functions]

- A reproducing kernel Hilbert space (RKHS) \mathcal{H} is a Hilbert space of functions s.t. the evaluations $f \rightarrow f(x)$ are continuous for all x.

By Riesz theorem, there exists $k(x, \cdot) \in \mathcal{H}$ s.t. $f(x) = \langle f, k(x, \cdot) \rangle$.

In particular, with $f = k(y, \cdot)$:

$$k(x, y) = \langle k(x, \cdot), k(y, \cdot) \rangle$$

k is a kernel:

$$\sum a_i a_j k(x_i, x_j) = \sum a_i a_j \langle k(x_i, \cdot), k(x_j, \cdot) \rangle \geq 0$$

Equivalence between kernels and RKHS: the Moore-Aronszajn theorem

For any kernel k, there exists a unique RKHS with kernel k: $\mathcal{H}_k := \text{span}(k(x, \cdot), x)$, with $\langle k(x, \cdot), k(y, \cdot) \rangle = k(x, y)$.
From functions to kernels

RKHS - Main facts [case of real-valued functions]

- A reproducing kernel Hilbert space (RKHS) \mathcal{H} is a Hilbert space of functions s.t. the evaluations $f \mapsto f(x)$ are continuous for all x.
- By Riesz theorem, $\exists! k(., x) \in \mathcal{H}$ s.t. $f(x) = \langle f, k(x, .) \rangle$
From functions to kernels

RKHS - Main facts [case of real-valued functions]

- A reproducing kernel Hilbert space (RKHS) \(\mathcal{H} \) is a Hilbert space of functions s.t. the evaluations \(f \rightarrow f(x) \) are continuous for all \(x \).
- By Riesz theorem, \(\exists ! k(., x) \in \mathcal{H} \) s.t. \(f(x) = \langle f, k(x, .) \rangle \)
- In particular, with \(f = k(y, .) \) : \(k(x, y) = \langle k(x, .), k(y, .) \rangle \)
From functions to kernels

RKHS - Main facts [case of real-valued functions]

- A reproducing kernel Hilbert space (RKHS) \(\mathcal{H} \) is a Hilbert space of functions s.t. the evaluations \(f \rightarrow f(x) \) are continuous for all \(x \).
- By Riesz theorem, \(\exists! k(., x) \in \mathcal{H} \) s.t. \(f(x) = \langle f, k(x, .) \rangle \)
- In particular, with \(f = k(y, .) \) : \(k(x, y) = \langle k(x, .), k(y, .) \rangle \)
- \(k \) is a kernel:
 \[
 \sum a_ia_jk(x_i, x_j) = \sum a_ia_j\langle k(x_i, .), k(x_j, .) \rangle = \| \sum a_i k(x_i, .) \|^2 \geq 0
 \]
From functions to kernels

RKHS - Main facts [case of real-valued functions]

- A reproducing kernel Hilbert space (RKHS) \mathcal{H} is a Hilbert space of functions s.t. the evaluations $f \mapsto f(x)$ are continuous for all x.
- By Riesz theorem, $\exists! k(., x) \in \mathcal{H}$ s.t. $f(x) = \langle f, k(x, .) \rangle$
- In particular, with $f = k(y, .)$: $k(x, y) = \langle k(x, .), k(y, .) \rangle$
- k is a kernel:
 $$\sum a_ia_jk(x_i, x_j) = \sum a_ia_j\langle k(x_i, .), k(x_j, .) \rangle = \| \sum a_i k(x_i, .) \|^2 \geq 0$$

Equivalence between kernels and RKHS : the Moore-Aronszajn theorem

For any kernel k, there exists a unique RKHS with kernel k:
$$\mathcal{H}_k := \text{span}(k(x, .), x), \text{ with } \langle k(x, .), k(y, .) \rangle = k(x, y)$$
RKHS of zero-mean functions

Proposition

Let \mathcal{H} be a RKHS of kernel k, satisfying $\int \sqrt{k(s, s)} d\nu(s) < \infty$. Then:

- $\exists! R$ s.t. $\int h(x) d\nu(x) = \langle R, h \rangle_\mathcal{H}$.
RKHS of zero-mean functions

Proposition

Let \mathcal{H} be a RKHS of kernel k, satisfying $\int \sqrt{k(s, s)} d\nu(s) < \infty$. Then:

- $\exists! R$ s.t. $\int h(x) d\nu(x) = \langle R, h \rangle_{\mathcal{H}}$.

Denote $\mathcal{H}_1 := \text{span}(R)$ and $\mathcal{H}_0 := \mathcal{H}_1^\perp$. Then:
RKHS of zero-mean functions

Proposition

Let \mathcal{H} be a RKHS of kernel k, satisfying $\int \sqrt{k(s, s)}d\nu(s) < \infty$. Then:

- $\exists! R$ s.t. $\int h(x)d\nu(x) = \langle R, h \rangle_{\mathcal{H}}$.

Denote $\mathcal{H}_1 := \text{span}(R)$ and $\mathcal{H}_0 := \mathcal{H}^\perp$. Then:

- \mathcal{H}_0 is the subspace of zero-mean functions:

 $$h \in \mathcal{H}_0 \iff \langle R, h \rangle_{\mathcal{H}} = 0 \iff \int h(x)d\nu(x) = 0$$

Proof: use the properties of the sum and projection of RKHS ([1]).
RKHS of zero-mean functions

Proposition

Let \mathcal{H} be a RKHS of kernel k, satisfying $\int \sqrt{k(s, s)} d\nu(s) < \infty$. Then:

- $\exists! R$ s.t. $\int h(x) d\nu(x) = \langle R, h \rangle_{\mathcal{H}}$.

Denote $\mathcal{H}_1 := \text{span}(R)$ and $\mathcal{H}_0 := \mathcal{H} \perp_1$. Then:

- \mathcal{H}_0 is the subspace of zero-mean functions:
 $$h \in \mathcal{H}_0 \iff \langle R, h \rangle_{\mathcal{H}} = 0 \iff \int h(x) d\nu(x) = 0$$

- \mathcal{H}_1 and \mathcal{H}_0 are RKHS with kernels:
 $$k_1(x, y) = \frac{\int k(x, s) d\nu(s) \int k(y, t) d\nu(t)}{\int \int k(s, t) d\nu(s) d\nu(t)}$$
 $$k_0 = k - k_1$$

Proof: use the properties of the sum and projection of RKHS ([1])
A new class of kernels for sensitivity analysis

Start with an ANOVA kernel on \mathbb{R}^d:

$$k_{\text{ANOVA}}(x, y) = \prod_{i=1}^{d} (1 + k^i(x_i, y_i))$$

where the k^i are 1-dimensional kernels. Now, replace each k^i by

$$k_0^i(x, y) = k^i(x, y) - \frac{\int k^i(x, s) d\nu(s) \int k^i(y, t) d\nu(t)}{\int \int k^i(s, t) d\nu(s) d\nu(t)}$$

and obtain:

$$k^*_{\text{ANOVA}}(x, y) = \prod_{i=1}^{d} (1 + k_0^i(x_i, y_i))$$
A new class of kernels for sensitivity analysis

Start with an ANOVA kernel on \mathbb{R}^d:

$$k_{\text{ANOVA}}(x, y) = \prod_{i=1}^{d} (1 + k^i(x_i, y_i))$$

where the k^i are 1-dimensional kernels. Now, replace each k^i by

$$k^i_0(x, y) = k^i(x, y) - \frac{\int k^i(x, s)d\nu(s)\int k^i(y, t)d\nu(t)}{\int\int k^i(s, t)d\nu(s)d\nu(t)}$$

$$k^*_{\text{ANOVA}}(x, y) = \prod_{i=1}^{d} (1 + k^i_0(x_i, y_i))$$

Important remark

All the $k^*_{\text{ANOVA}}(\cdot, y)$ are "1+0" separable functions
Denote:
- m_I's the terms of the FANOVA decomposition of m
- S_I the corresponding Sobol indices

Then, if $k = k_{\text{ANOVA}}^*$, we have – without any recursion:

- $m_I = \prod_{i \in I} k_0^i (x_i)^t K^{-1} F$
- $S_I = \frac{F^t K^{-1} (\bigodot_{i \in I} \Gamma_i) K^{-1} F}{F^t K^{-1} (\bigodot_{i \in I} (1_{n \times n} + \Gamma_i) - 1_{n \times n}) K^{-1} F}$

with $\Gamma_i = \int k_0^i(x_i) k_0^i(x_i)^t d\nu_i(x_i)$
Illustration with a 2 dimensional g-Sobol function

Estimated Sobol indices: $S_1 = 0.675$, $S_2 = 0.30$, $S_{12} = 0.025$
(rounded true values: 0.69, 0.30, 0.02)
Loève representation theorem [1]

- Let \mathcal{H}_k be the RKHS of kernel k
- And Z be a centered Gaussian process with (covariance) kernel k.

Then, introducing $\mathcal{L}(Z) = \text{span}(Z_x, x)$, with $\langle Z_x, Z_y \rangle = E(Z_x Z_y)$, the following map defines an isometry:

$$
\phi : \mathcal{H}_k \rightarrow \mathcal{L}(Z)
$$

$$
k(x,) \rightarrow Z_x
$$
Loève representation theorem [1]

- Let \mathcal{H}_k be the RKHS of kernel k.
- And Z be a centered Gaussian process with (covariance) kernel k.

Then, introducing $\overline{\mathcal{L}}(Z) = \text{span}(Z_x, x)$, with $\langle Z_x, Z_y \rangle = E(Z_x Z_y)$, the following map defines an isometry:

$$\phi : \mathcal{H}_k \to \overline{\mathcal{L}}(Z)$$

$$k(x, .) \to Z_x$$

Application: Translation of \mathcal{H}_1 and \mathcal{H}_0 (1-d case)

$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_0$ is translated "pointwise" as:

$$Z(.) = E \left(Z(.) \left| \int Z(t) d\nu(t) \right. \right) + Z(.) - E \left(Z(.) \left| \int Z(t) d\nu(t) \right. \right)$$

The kernels of the two corresponding processes are k_1 and k_0.
References and connected works

- Wahba [12] has worked on RKHS of zero-mean functions, in the context of smoothing splines.
- Further developments of this work can be found in our paper [4] as well as in the PhD thesis of N. Durrande [3]
Part II. Software : New kernel classes in R packages
Block-additive graph-based kernels – Illustration of the idea

A toy [and advertising] example: Ishigami function

\[f(x) = \sin(x_1) + A\sin^2(x_2) + Bx_3^4\sin(x_1) = f_2(x_2) + f_{1,3}(x_1, x_3) \]
Block-additive graph-based kernels with \textit{fanovaGraph}

What is implemented?

Scope: functions of high complexity (high order interactions)
- Graph estimation (from data)
- Graph thresholding
- Kernel construction (from the graph)
- Kriging model inference with a block-additive kernel
- Prediction

To go further and see more complex case studies...
- Attend the talk of J. Fruth at ERCIM!
Scaling-based kernels – illustration

Left: Kriging with a stationary kernel. Right: scaling-based kernel.
Scaling-based kernels

When non-stationarity comes from the input space

Assume that $Y = Z_{g(x)}$ with:

- Z a (stationary) process on X, with kernel K_{Θ}
- g a function on X.

The idea is to estimate g (and the parameters Θ) from the data.

Parametrization of g (Xiong, Chen, Apley and Ding, 2007 [13])

g: Coordinatewise the antiderivative of a piecewise affine function
Scaling-based kernels

When non-stationarity comes from the input space

Assume that $Y = Z_g(x)$ with:

- Z a (stationary) process on X, with kernel K_Θ
- g a function on X.

Then the kernel of Y is:

$$K_g(x, y) = \text{cov}(Z_g(x), Z_g(y)) = K(g(x), g(y))$$

The idea is to estimate g (and the parameters Θ) from the data.
Scaling-based kernels

When non-stationarity comes from the input space

Assume that \(Y = Z_g(x) \) with:

- \(Z \) a (stationary) process on \(X \), with kernel \(K_\Theta \)
- \(g \) a function on \(X \).

Then the kernel of \(Y \) is:

\[
K_g(x, y) = \text{cov}(Z_g(x), Z_g(y)) = K(g(x), g(y))
\]

The idea is to estimate \(g \) (and the parameters \(\Theta \)) from the data.

Parametrization of \(g \) (Xiong, Chen, Apley and Ding, 2007 [13])

\(g \): Coordinatewise the antiderivative of a piecewise affine function
Scaling transform with function \textit{km}

What is implemented?

- \textit{knots} : possibly a different number of knots per dimension, fixed by the user. Default is two knots (0 and 1) per dimension.

- \textit{values at knots} : estimated by ML (default), or fixed

\textit{Numerical estimation is performed with analytical gradient (BFGS or genetic algorithm genoud)}
Scaling transform with function *km*

What is implemented?

- **knots**: possibly a different number of knots per dimension, fixed by the user. Default is two knots (0 and 1) per dimension.
- **values at knots**: estimated by ML (default), or fixed. *Numerical estimation is performed with analytical gradient (BFGS or genetic algorithm genoud)*

Argument details

- **scaling**: to be turned to TRUE for scaling transform.
- **knots**: an optional list containing the vectors of knots per dim.
- **coef.cov**: an optional list containing the vectors of values at knots when fixed. [Then *coef.trend* and *coef.var* must be specified]
A. Berlinet and C. Thomas-Agnan.
Reproducing kernel Hilbert spaces in probability and statistics.

W. Chen, R. Jin, and A. Sudjianto.
Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty.

N. Durrande.

Reproducing kernels for spaces of zero mean functions.
application to sensitivity analysis.
Submitted, +2011.

B. Efron and C. Stein.
The jackknife estimate of variance.
Total interaction indices for the decomposition of functions with high complexity.
Submitted, +2011.

W.F. Hoeffding.
A class of statistics with asymptotically normal distributions.

Data-driven kriging models based on fanova-decomposition.

T.J. Santner, B. Williams, and W. Notz.
The Design and Analysis of Computer Experiments.

I. Sobol.
Theorems and examples on high dimensional model representation.
S. Touzani.
Response surface methods based on analysis of variance expansion for sensitivity analysis.

G. Wahba.
Spline Models for Observational Data.

A non-stationary covariance-based kriging method for metamodelling in engineering design.