

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.1.3 NeOn Formalisms for Modularization: Syntax,
Semantics, Algebra

Deliverable Co-ordinator: Mathieu d’Aquin (OU)

Deliverable Co-ordinating Institution: Knowledge Media Institute,
the Open University

Other Authors: Peter Haase, Sebastian Rudolph, Jérôme Euzenat,
Antoine Zimmermann, Martin Dzbor, Marta Iglesias, Yves Jacques,
Caterina Caracciolo, Carlos Buil Aranda, Jose Manuel Gomez

The goal of this document is to come up with a formalism for ontology modularization, including syntaxes and
the fundamental properties of a semantics of such a formalism. Furthermore we introduce operators to create,
combine and manipulate ontology modules and give formal definitions for these operators based on the semantics
of ontology modules. The definition of the NeOn formalism for modularization and of the operators to manipulate
ontology modules are guided by a number of use cases and examples, from NeOn cases studies and other work
packages.

Document Identi-
fier:

NEON/2008/D1.1.3/V1.1 Date due: February 29, 2008

Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 29, 2008
Project start date March 1, 2006 Version: V1.1
Project duration: 4 years State: Final

Distribution: public

2006–2008 c© Copyright lies with the respective authors and their institutions.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 2 of 49

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commis-
sion of the European Communities by the grant number IST-2005-027595. The following partners
are involved in the project:

2006–2008 c© Copyright lies with the respective authors and their institutions.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 3 of 49

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

2006–2008 c© Copyright lies with the respective authors and their institutions.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 4 of 49

Change Log

Version Date Amended by Changes
0.1 01-02-2007 Sebastian Rudolf Set up original document
0.2 10-06-2007 Mathieu d’Aquin, Antoine

Zimmermann, Peter Haase
Initial Structure, sanity check

0.3 15-12-2007 Mathieu d’Aquin Change in Structure, added Use-
cases and State of the art

0.4 25-01-2008 Peter Haase Template update
0.5 30-01-2008 Mathieu d’Aquin (+ other au-

thors)
Integration of various contributions

1.0 07-02-2008 Mathieu d’Aquin Corrections, version sent to QA
1.1 25-03-2008 Mathieu d’Aquin Corrections according to QA, version

sent to WP leader

2006–2008 c© Copyright lies with the respective authors and their institutions.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 5 of 49

Executive Summary

The goal of this document is to come up with a formalism for ontology modularization, including
syntaxes and the fundamental properties of a semantics of such a formalism. Furthermore we in-
troduce operators to create, combine and manipulate ontology modules and give formal definitions
for these operators based on the semantics of ontology modules.
Through these elements, we intend to provide a generic formalism that would gather under a com-
mon framework the different aspects of ontology modularization (language to specify modules,
formal properties, an algebra of operators to create, combine and manipulate modules) with the
aim of meeting the requirements of a broad range of application scenarios, having different views
and different needs for modularization (in particular within NeOn).
To achieve this, we first identify a number of use cases for ontology modularization, that are moti-
vated and illustrated by concrete example scenarios from the NeOn case studies and other work
packages. We then describe previous work that has been targeting different aspects related to our
formalism, to finally present the three main elements of our formalism, as motivated and informed
by the use cases and related work: syntaxes for modular ontologies that integrate with the NeOn
metamodels, the formal properties of this language and its semantics, and operators for combining,
creating and manipulating ontology modules.

2006–2008 c© Copyright lies with the respective authors and their institutions.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 6 of 49

Contents

1 Introduction 9

2 Use Cases for Modularization of Ontologies 11
2.1 Designing Modular Ontologies . 11
2.2 Partial Import and Reuse . 12
2.3 Improving Performance . 13
2.4 Facilitating the Exploration and Maintenance of the Ontology 14
2.5 Modularization as a Means to Ontology Customization 14

3 State-of-the-art in Ontology Modularization 17
3.1 Knowledge Import . 17

3.1.1 OWL Import . 17
3.1.2 Partial/Semantic Import . 17
3.1.3 Modularity in Classical Description Logics 18
3.1.4 P-DL . 18

3.2 Linking Modules . 19
3.2.1 Distributed Description Logics . 19
3.2.2 Variants of DDL . 19
3.2.3 E-Connection . 20
3.2.4 Integrated Distributed Description Logics 20

3.3 Extracting Modules from Existing Ontologies . 21
3.4 Ontology Algebra . 22

4 Syntaxes and Metamodel 24
4.1 Requirements for a Module Definition Language 24
4.2 Abstract Syntax . 25
4.3 Metamodel . 27
4.4 Concrete Syntax . 28
4.5 Examples . 29

5 Semantics 32
5.1 Requirements for the semantics of modular ontologies 32
5.2 Semantics of the local content of modules . 33
5.3 Satisfied mapping . 34

2006–2008 c© Copyright lies with the respective authors and their institutions.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 7 of 49

5.4 Global interpretation of modules . 35
5.4.1 Consequences of a module . 36

6 Algebra 38
6.1 Binary Module Composition Operators . 38

6.1.1 Union . 38
6.1.2 Difference . 39
6.1.3 Intersection . 39

6.2 Module Extraction Operators . 40
6.2.1 Reduction/Module Extraction . 40
6.2.2 Reduction by Hiding . 40
6.2.3 Decomposition/Partitionning . 41

6.3 Match and Other Syntactic Operations . 41
6.3.1 Collapse . 42
6.3.2 Interface Completion . 42

7 Discussion 44

Bibliography 46

2006–2008 c© Copyright lies with the respective authors and their institutions.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 8 of 49

List of Figures

4.1 Metamodel extensions for ontology modules. 27
4.2 Overview of the OMV extension for Ontology Modules. 28

5.1 This figure shows the interpretations of local ontologies, which are correlated into
a global domain through the equalizing function ε. Mappings are interpreted in the
global domain. 33

2006–2008 c© Copyright lies with the respective authors and their institutions.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 9 of 49

Chapter 1

Introduction

One of the major problems that hamper ontology engineering, maintenance and reuse in the cur-
rent approaches is that ontologies are not designed in a way that facilitates these tasks. To some
extent, the problem faced by ontology engineers can be seen as similar to the one faced by software
engineers. In both cases, facilitating the management of a system (software or ontology) requires
to identify components, modules, that can decoupled from this system, to be exploitable in a dif-
ferent context and integrated with different components. In other terms, building an ontology (and
a software) as a combination of independent, reusable modules reduces the effort required for its
management, in particular in a collaborative and distributed environment.
This idea has lead to the general notion of modular software in software engineering and is currently
gaining more and more attention within the ontology community, as the ontology modularization
problem. First approaches have been devised, promoting the development of local ontologies,
linked together by mappings [BGvH+03a, KLWZ03]. Another direction of research in the field of
ontology modularization concerns the extraction of significant modules from existing ontologies
(see e.g. [dSSS07] for an overview).
However, as the definition for a good software module is already vague [Par72], there is no
clear agreement on the criteria for decomposing an ontology into modules. Indeed, as shown
in [dSSS07], what constitutes a module is subjective and is intrinsically dependent on the appli-
cation scenario in which ontology modules and modular ontologies are required. Moreover, while
a number of studies have been published on different aspects of modularization (languages for
modular ontologies, techniques to extract modules from ontologies, formal properties of ontology
modules), these elements tend to be disconnected from each other and no complete modularization
framework have yet been proposed for ontologies.
For these reasons, we intend to provide a generic formalism that would gather under a common
framework the different aspects of ontology modularization (language to specify modules, formal
properties, an algebra of operators to create, combine and manipulate modules) with the aim of
meeting the requirements of a broad range of application scenarios, having different views and
different needs for modularization (in particular within NeOn).
To achieve this, we first identify a number of use cases for ontology modularization, that are moti-
vated and illustrated by concrete example scenarios from the NeOn case studies and other work
packages (Chapter 2). We then describe previous work that has been targeting different elements
related to our formalism (Chapter 3). The following chapters introduce the three main aspects
of the NeOn formalism for ontology modularization, as motivated and informed by the use cases
and related work. In Chapter 4, three syntaxes are presented for the modular ontology language:
an abstract syntax, a metamodel that integrates with the NeOn metamodel for network ontolo-
gies [HBP+07] and a concrete syntax that is presented as an extension of the OMV ontology

2006–2008 c© Copyright lies with the respective authors and their institutions.

CHAPTER 1. INTRODUCTION 10

metadata vocabulary [HSH+05b]. The formal properties of this language and its semantics are
presented in Chapter 5. In Chapter 6, operators for combining ontology modules, creating ontol-
ogy modules (extracting modules from ontologies or decomposing ontologies into modules) and
manipulating ontology modules are presented. Finally, some discussion points about future work,
particularly concerning the implementation of the formalism, are raised in Chapter 7.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 11 of 49

Chapter 2

Use Cases for Modularization of Ontologies

Before defining a formalism for ontology modularization, it is necessary to better understand the
scenarios in which modularizing an ontology is useful or required. This is a difficult task as modu-
larization of ontologies can be apprehended differently by different persons, in different applications.
In this chapter we identify a number of use cases for ontology modularization that appear in con-
crete applications within the NeOn case studies or other technical work packages. These use cases
will be used in the following sections to guide and illustrate the definition of the NeOn formalism for
ontology modularization and of the algebra for manipulating modules.

2.1 Designing Modular Ontologies

The idea of ontology modularization is primarily inspired from the domain of software engineering
where modularization refers to the design of software as the combination of self-contained compo-
nents, easier to build, reuse and maintain than a program made of one, often large and intricate
piece of code. Therefore, the most obvious scenario in which ontology modularization is involved
is the case of the construction of an ontology not as a monolithic model, but taking benefit from the
properties of modular systems: reusability, extensibility and maintainability. In addition, developing
ontologies as a set of self-contained modules helps in building more distributed applications, im-
proving the scalability of some ontology based tasks such as reasoning. Of course, in this case,
different ontology modules, which may come from different sources, have to be related together in
order to be used jointly.

Example 1 (WP7): FAO collects statistics concerning several aspects of fisheries, including cap-
tures, aquaculture production, catches, fleets, trade of commodities and consumption. Each piece
of statistical data is referenced by the following dimensions: time (in years), space (land and/or wa-
ter areas) and the variable(s) representing the observed object (e.g. biological species). The data
used to indicate these dimensions are called reference data and are (hierarchically) organized in
reference tables and stored into a relational database. The first set of fisheries ontologies created
for WP7 were based on that reference data (cf. [CG07]).
When modeling reference data as ontologies, it is important that each ontology be devoted to model
an (homogeneous) piece of domains (or subdomains) of the reference data. This approach would
constitute a “modular design” as each ontology to include in the network would correspond to a
piece of the fisheries domain. In many cases, this modeling is already partially embodied into the
organization of the reference tables. Examples are the hierarchy of biological species, the division
of water bodies into areas used for statistical reporting of catch and production, the classification of

2006–2008 c© Copyright lies with the respective authors and their institutions.

2.2. PARTIAL IMPORT AND REUSE 12

fishing vessels and that one of fishing gears. As discussed in [CG07], a number of ingredients are
necessary in order to effectively define and use these ontologies, including automatic methods to
create documentation concerning the ontologies and versioning mechanisms.
Although it may be easy to identify homogeneous “pieces” of reference data that can be modeled
as individual ontologies, the resulting ontologies will also need to be connected to one another.
For example a fishing techniques should always be considered together with the fishing gear used
and the vessel types on which the gear is mounted. Also, commodities are naturally linked to the
biological species the originate from, and data about fish catch needs to be presented together with
the geographical area where the catch happened. Therefore, mechanisms should be in place in
order to allow linking of ontologies and their joint exploitation.

Addressing Example 1: In the following, the syntaxes (Chapter 4) and the semantics (Chapter 5)
of a language for specifying modules is defined. It allows the ontology designer to encapsulate
ontology content into modules, to import external modules and to related modules with each other,
hence providing complete support for the design of modular ontologies.

2.2 Partial Import and Reuse

While ideally ontologies would be built in a modular way, most of existing ontologies have not been
designed with modularity in mind, hampering their integration –their reuse– in applications other
than the one they have been built for. In addition, a significant module in a given application may be
too large in another application, and it is not possible to anticipate the requirements of any possible
scenario while building modules. Therefore, it is often required to be able to reuse and integrate
only a part of a given ontology, by identifying the relevant elements within the ontology and reuse
them together with all the information required for their semantic definition, without importing and
without having to commit to the entire ontology. Ontology modularization techniques are needed to
extract from potentially large and complex ontologies, modules that are relevant and adequate to
the task at hand.

Example 2, (WP8): In the context of the invoicing use case, the main objective is to offer a tool
that will allow the end-user to map their invoices (instances of a pre-existing or not invoice model)
to the invoice reference ontology described in [GPBH+07]. Such a tool should provide access only
to the concepts of the ontology that are relevant to the task of the current user. For instance, it is
not desirable to provide access to the class “HazardousItemType” when a user in its invoices is just
providing toilet paper.
Therefore, a modularization technique is required for showing to the users the parts of the invoice
reference ontology they need. More concretely, this would be used for extracting the EDIFACT
module from the invoice reference ontology. In this test case, iSOCO provides the invoice reference
ontology and from it a module with just the concepts and relations that are needed by the EDIFACT
conceptualization are presented. This is particularly useful when an extension of a upper level
ontology is performed. Due to its generic conceptualization there are some parts of an upper
level ontology which will not be used at certain moments (an end user will most probably not use
certain generic concepts, he will focus in the most interesting, specific concepts). To provide a
subset/module of this upper level ontology will be highly necessary.

2.3. IMPROVING PERFORMANCE 13

Addressing Example 2: The language for designing modular ontologies (Chapters 4 and 5) in-
tegrates the notion of partial import by allowing to specify the elements of imported modules that
have to be considered, and therefore, to ignore the others. In addition, as part of a module algebra
in Chapter 6, operators to extract modules from existing ontologies are defined.

2.3 Improving Performance

By separating knowledge elements into significant components, modularization allows to focus only
to the elements that are relevant for a given application at a given time. Therefore, one obvious use
case for modularization is to improve performance, by reducing the amount of knowledge that have
to be manipulated by ontology-based tools, including reasoners and editors.

Example 3 (WP7): Data about biological species is used for a number of statistics, such as catch,
production, trade of fisheries commodities, distribution of fish stocks etc. (see [CG07], Sec. 4).
The backbone of the FAO resources concerning biological species is the ASFIS (Aquatic Science
and Fisheries Information System) list of biological species. This list of species is also organized
hierarchically (by means of taxonomic codes) and stored into the FIGIS database together with a
number of relevant pieces of information, such as: names in various languages, codes according
to international classifications (ISO).
The resulting (stand-alone) ontology (see [CG07], Sec. 6.3) is very large (12Mb) and consequently
difficult to use, as loading and visualizing it are very memory-consuming tasks that make working
with the ontology very slow, when not impossible. However, there are natural "fragments" of this
ontology that, for specific tasks and by specific users, could be considered instead of the entire
ontology. It would be then useful to identify these pieces and be able to select them out of the entire
available data/ontology. In the following we provide some examples of these fragments:

• Different classification systems aim at capturing different aspects of a species. For exam-
ple, taxonomic codes are meant to capture the biological features of a species, such as the
taxonomic chain they belong to, while the ISCAAP (International Standard Statistical Clas-
sification of Aquatic Animals and Plants) classification classifies species according to their
commercial value. Note that while each species as a unique taxonomic code and each tax-
onomic code only describes one species, typically more than one species is given the same
ISSCAAP code (ISCAAP is actually a classification into groups).

• Other types of fragments have a more complex definition, as they imply a grouping of species
according to other criteria. For example, when investigating on the state of fisheries in a
certain geographical area, a biologist will typically start by gathering data about the species
that can be found in that area.

In these cases, more than one ontology may be used to define these modules as currently the
WP7 ontologies for species and geographical division of water areas are currently distinct. So,
in order to be able to only select that “group” of species (possibly together with the taxonomic
chain they belong to and their commercial classification according to the ISSCAAP coding),
mechanisms should be in place in order to connect species and geographical areas, and only
select the species found in a given area.

• Considerations similar to those made above may be applied to modules of the ontology of
species based on the basis of the fishing techniques used.

2.4. FACILITATING THE EXPLORATION AND MAINTENANCE OF THE ONTOLOGY 14

• In some cases, it may also be very useful to be able to identify and select entire "branches"
of a taxonomy. Let an example of this be a line of classification of biological species (e.g.,
for a given species, the family, order and group it belongs to or, conversely, all the biological
species classified "under" a given group).

• Finally, another example of relevant module would only contain the species that are used to
produce fish meal. This type of module would be defined on the basis of the information cur-
rently contained in two ontologies, the one of biological species and the one of commodities.

Addressing Example 3: Operators for extracting modules from ontologies defined in Chapter 6
are useful for working only on the part of an ontology that is relevant, improving performance.
The focus here should be on the flexibility of the operators, which should be customizable to the
particular needs of the application.

2.4 Facilitating the Exploration and Maintenance of the Ontology

A small module that focuses on a particular topic or domain is obviously easier to apprehend for an
ontology designer or an expert of the domain than a large, heterogeneous ontology. In the same
line of idea, maintaining and validating ontologies is facilitated when only significant self-contained
modules need to be looked at.

Example 4 (WP7): Typically, ontology maintenance work takes place within a workflow where
two roles are assigned: subject expert and validators (cf [SCCJ07] Sec 2.3). According to this
workflow, any update (addition/modification) to the ontology remains in a “to be approved” status
until it is validated by a validator.
Although the ontology may be very large, usually only parts of it is affected by update by subject
experts, so only these parts actually need to be validate by validators. In order to facilitate validators’
tasks, it is advisable to give them the possibility to load and/or visualize only the part of the ontology
that requires validation. Therefore, it would be very useful to support validators with mechanisms
that extract out of the entire ontology only the module that includes the “to be validated” elements,
together with the relevant elements “around” them. We consider relevant elements all those that
should be taken into consideration by validators in order to accomplish their task: they typically
include classes above and below the line of subclass of the class under consideration, and the
classes linked (as domain/range) by a number of selected properties.

Addressing Example 4: The features of the formalism for modular ontologies and operators
already mentioned should provide support for showing parts of ontologies. Here the focus should
be on formally defining what should be included into the module, as part of the semantic context of
the considered entities.

2.5 Modularization as a Means to Ontology Customization

As mentioned in deliverable D4.4.1 [DKG+07], the proposition to consider access rights is based
on the capacity to identify within an ontology a sub-set of ontological entities that need to be treated
(for whatever reason) differently than other parts of the ontology. A classic situation that has origi-
nally led to investigating access rights and authorities comes from the requirement of individuals or

2.5. MODULARIZATION AS A MEANS TO ONTOLOGY CUSTOMIZATION 15

organizations to preserve certain confidentiality due to sensitivity of data content. Even if several
people access the same information, they may see different versions of it, different level of detail,
sensitivity, and similarly. Hence, it makes sense to replicate this situation and to create a number
of partitions on the ontological model describing such an organizational information system. One
advantage of not just denying access at the request stage but rather removing certain modules
from a large system/ontology/KB is in the content confinement [DKG+07].

Example 5 (WP4): Imagine a situation where an organization manages an ontology (or a network
of ontologies) on a particular aspect related to the organization’s interest (say fisheries or medical
drugs) –let us label this ontology as Oshared. Due to latest developments in the field, subject Alice
starts conceptualizing a new chunk of knowledge that leads her to introducing and/or amending
certain entities in that existing ontology. Let us denote this chunk as Malice. Obviously, Alice may
want to see her changes as if they were already part of the official ontology; e.g. to do some tests.
She wants to work with theOshared, however. What she may thus do is committing her amendments
in Malice into the official Oshared ontology.
Using the access control capability of the shared repository, Alice does her amendments directly
in the official Oshared because she is normally permitted to do such changes, but she is not yet
happy with the current state of her module Malice. Hence, she defines ontology Oshared as including
module Malice, but she would simultaneously restrict the access to Malice to herself. Since this is
a work in progress and perhaps a minor conceptual amendment (e.g. translation of term), Alice
feels she may work on the official branch/version of Oshared. She only needs that ‘lock’ on her new
additions temporarily – imagine she only wants to consult with Don whether a particular translation
is correct or not.
In this situation there is a shared ontology Oshared, which is used by Alice and many of her co-
workers for very specific purposes and tasks. For sake of this example, assume that Bob is among
those co-workers who use Oshared and Don is among those who cannot access the ontology in
question. We now have one ontology (which includes Alice’s new module Malice among other
aspects), but our three users see three different things:

Alice sees Oshared including the module Malice;

Bob sees Oshared not including the module Malice;

Don sees Oshared as being empty

Now Alice needs Don’s advice on some issues in her module. In a physical collaborative setting,
Alice would simply visit Don in his office and ask for his opinion. In the virtual setting, this can
be emulated by Alice granting Don a temporary authority to access her module Malice (or possibly
Msmaller ⊂ Malice or even Mlarger such that Malice ⊂ Mlarger ⊂ Oshared). As a result, Don will be
able to access a particular module (say, Mlarger), but not the whole ontology.
In the meantime, nothing whatsoever changed for Bob (and any other co-worker) – they still interact
with the original, sanitized Oshared which hides any of Alice’s changes and Don’s annotations. At
some point Alice and Don reach agreement, and Alice feels confident that now she may make an
official proposal for the extension of Oshared. She simply ‘cuts’ Don’s temporary authorities, and
enables her co-workers to obtain authorities appropriate to a specific extension protocol, workflow,
or business process. Only at this stage would Bob and other become aware of a change; however,
this would already be presented as an officially different ontology – say, Oextended integratingOshared

and Malice.

2.5. MODULARIZATION AS A MEANS TO ONTOLOGY CUSTOMIZATION 16

Addressing Example 5: Being able to specify a module and its "boundaries" is an important
aspect of this use case and is handled by the syntaxes and semantics of the module formalism
(Chapters 4 and 5). Moreover, extracting from modules parts that are relevant to the user and
parts that should be hidden from him/her is realized through a number of operators of the algebra
(Chapter 6). The algebra also provides the essential operations to combine, merge and, in general,
manipulate modules.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 17 of 49

Chapter 3

State-of-the-art in Ontology Modularization

In the following we provide an overview of existing formalisms for ontology modularization. We first
look at approaches for importing ontologies and ontology modules and then, to formalisms that
allow the definition of modules and of relations between them. One important part of a modular-
ization formalism concerns operators to create, combine and, more generally, manipulate ontology
modules. We then consider the important number of techniques that have been developed for ex-
tracting modules from existing ontologies, to finally look at the few existing studies dedicated to the
definition of an ontology algebra.

3.1 Knowledge Import

3.1.1 OWL Import

The OWL ontology language provides limited support to modular ontologies: an ontology document
–identified via its ontology URI– can be imported by another document using the owl:imports
statement. The semantics of this import statement is that all definitions contained in the imported
ontology document are included in the importing ontology, as if they were defined in the importing
ontology document. It is worth mentioning that owl:imports is directed –only the importing
ontology is affected– and transitive –if A imports B and B imports C, then A also imports the
definitions contained in C. Moreover, cyclic imports are allowed (e.g. A imports B and B imports
A).
One of the most commonly mentioned weaknesses of the importing mechanism in OWL is that it
does not provide any support for partial import [VOM02, PSZ06]. Even if only a part of the imported
ontology is relevant or agreed in the importing ontology, every definitions are included. Moreover,
there is no logical difference between imported definitions and proper definitions in the importing
ontology: they share the same interpretation.

3.1.2 Partial/Semantic Import

Grau et al. [GHKS07] propose a logic-based notion of modularity that allows the modeler to spec-
ify the external signature of their ontology, i.e. whose symbols that are reused from some other
ontology. The authors define two restrictions on the usage of the external signature, a syntactic
and a slightly less restrictive semantic one, each of which is decidable and guarantees a certain
kind of black-box behavior that enables the controlled merging of ontologies. To achieve this, cer-
tain constraints on the usage of the external signature need to be imposed: in particular, merging
ontologies should be safe in the sense that they do not produce unexpected results such as new

2006–2008 c© Copyright lies with the respective authors and their institutions.

3.1. KNOWLEDGE IMPORT 18

inconsistencies or subsumptions between imported symbols. For this reason, the authors intro-
duce the notion of conservative extensions to define modularity of ontologies, and then prove that
a property of some ontologies, called locality, can be used to achieve modularity.
A similar notion of partial import is introduced in [PSZ06]: The authors propose a new import
primitive, called semantic import, to facilitate partial ontology reuse.

3.1.3 Modularity in Classical Description Logics

Some authors [GK07] argue that modularity can be achieved without introducing new formal lan-
guages. In particular they propose translation of so called modular ontology languages (DDL,
E-connections, etc.) into standard DL and describe new reasoning services to ensure modularity.
Although this might be satisfactory from a logical point of view, it does not take into account engi-
neering aspects like encapsulation, separation of ontologies from mappings, potential heterogeneity
of modules, etc.

3.1.4 P-DL

P-DL, Package-based Description Logics [BCH06d], use importing relations to connect local mod-
els. In contrast to OWL, which forces the model of an imported ontology to be completely embedded
in a global model, the P-DL importing relation is partial in that only commonly shared terms are in-
terpreted in the overlapping part of local models. Here, modules are called packages and subsets
of the elements (entities) contained in a package can be imported by other packages. The seman-
tics of P-DL is given as the follows: the image domain relation between local interpretations Ii and
Ij (of package Pi and Pj) is rij ⊆ ∆i ×∆j . P-DL importing relation is:

• one-to-one: for any x ∈ ∆i, there is at most one y ∈ ∆j , such that (x, y) ∈ rij , and vice
versa.

• compositionally consistent: rij = rik ◦ rjk, where ◦ denotes function composition. Therefore,
semantic relations between terms in i and terms in k can be inferred even if k doesn’t directly
import terms from i.

Thus, a P-DL model is a virtual model constructed from partially overlapping local models by merg-
ing “shared” individuals.
P-DL also supports selective knowledge sharing by associating ontology terms and axioms with
“scope limitation modifiers (SLM)”. A SLM controls the visibility of the corresponding term or axiom
to entities on the web, in particular, to other packages. The scope limitation modifier of a term or
an axiom tK in package K is a boolean function f(p, tK), where p is a URI of an entity, the entity
identified by p can access tK iff f(p, t) = true. For example, some representative SLMs can be
defined as follows:

• ∀p, public(p, t) := true, means t is accessible everywhere.

• ∀p, private(p, t) := (t ∈ p), means t is visible only to its home package.

P-DL semantics ensures that distributed reasoning with a modular ontology will yield the same con-
clusion as that obtained by a classical reasoning process applied to an integration of the respective
ontology modules [BCH06c]. However, reported result [BCH06a] only supports reasoning in P-DL
as extensions of the ALC DL. Reasoning algorithms for more expressive P-DL TBox, as well as for
ABox reasoning, are still to be investigated.

3.2. LINKING MODULES 19

3.2 Linking Modules

3.2.1 Distributed Description Logics

Unlike import mechanisms that include elements from some modules into the considered one,
Distributed Description Logics (DDLs) [BS02] adopt a linking mechanism, relating the elements of
"local ontologies" (called context) with elements of external ontologies (contexts). Each context Mi

is associated to its own local interpretation. Semantic relations are used to draw correspondences
between elements of local interpretation domains. These relations are expressed using bridge rules
of the form:

• i : φ
v−→ j : ψ (into rule), with semantics: rij(φ

Ii) ⊆ ψIj

• i : φ
w−→ j : ψ (onto rule), with semantics: rij(φ

Ii) ⊇ ψIj

where Ii = (∆i, .
Ii) (respectively Ij = (∆j, .

Ij)) is the local interpretation of Mi (respectively Mj),
φ and ψ are formulae, and rij is a domain relation mapping elements of the interpretation domain
of Mi to elements of the interpretation domain of Mj (rij ⊆ ∆i×∆j). We only discuss bridge rules
between concepts (meaning that φ and ψ are concept names or expressions) since it is the only
case that has reported reasoning support [ST05].
Bridge rules between concepts cover one of the most important scenarios in modular ontologies:
they are intended to assert relationships, like concept inclusions, between elements of two different
local ontologies. However, mainly because of the local interpretation, they are not supposed to be
read as classical DL axioms. In particular, a bridge rule only affect the interpretation of the target

element, meaning for example that i : φ
v−→ j : ψ is not equivalent to j : ψ

w−→ i : φ.
Arbitrary domain relations may not preserve concept unsatisfiability among different contexts which
may result in some reasoning difficulties [BCH06c]. Furthermore, while subset relations (between
concept interpretations) is transitive, DDL domain relations are not transitive, therefore bridge rules
cannot be transitively reused by multiple contexts. Those problems are recently recognized in
several papers [BCH06b, BCH06c, SSW05b, SSW05a] and it is proposed that arbitrary domain re-
lations should be avoided. For example, domain relations should be one-to-one [SSW05a, BCH06c]
and non-empty [SSW05b].

3.2.2 Variants of DDL

C-OWL: C-OWL [BGvH+03b] derives from DDL by particularising the ontology language to OWL,
and by enriching the family of bridge rules. However, the semantics of C-OWL is basically the same
as the one of DDL.

DDL with hybrid rules: Sometimes, it happens that a concept in an ontology is represented
as a role in another ontology. That is why DDL bridge rules were extended in [GST07] to allow

expressing hybrid rules like i :C
v→ j :R where C is a concept and R is a role.

DDL revisited: A variant of Distributed Description Logics was proposed in [Hom07]. It defines a

new kind of bridge rules called conjunctive bridge rules, which are written i :φ
⊇
� j :ψ with φ and

ψ concepts from two different ontologies. The semantics of such conjunctive rules is defined as

follows: a distributed interpretation satisfies i :φ
⊇
� j :ψ with φ iff for each conjunctive bridge rules

3.2. LINKING MODULES 20

i :Φ
⊇
� j :Ψ in the system, rij(φ

Ii ∩ΦIi) ⊇ ψIj ∩ΨIj . These particular rules discard an unintuitive
consequence of the semantics of DDL bridge rules. For example, if in an ontology O1 it is specified

that NonFlying1 ≡ ¬Flying1 and Bird1 v Flying1, the two bridge rules 1 : Bird1
w→ 2 : Penguin2

and 1 :NonFlying1
w→ 2 :Penguin2 would not lead to any inconsistency in classical DDL. The goal

of this variant of DDL is to avoid this kind of counterintuitive result.

3.2.3 E-Connection

While DDLs are focused on one type of relation between module elements, concept inclusion,
the E-connection approach [KLWZ03, GPS04] allows to define link properties from one module to
another. For example, if a moduleM1 contains a concept named 1:Fish and a moduleM2 contains
a concept named 2:Region, one can connect these two modules by defining a link property named
livesIn between 1:Fish and 2:Region.
Formally, given ontology modules {Li}, a (one-way binary) link E ∈ Eij , where Eij, i 6= j is the set
of all links from the module Li to the module Lj , the following syntax and semantics can be used to
construct a concept in module Li linking through a restriction to a concept C in module Lj (noted
j:C):

• ∃E.(j:C) : {x ∈ ∆i|∃y ∈ ∆j, (x, y) ∈ EM , y ∈ CM}

• ∀E.(j:C) : {x ∈ ∆i|∀y ∈ ∆j, (x, y) ∈ EM → y ∈ CM}}

• ≤ nE.(j:C) : {x ∈ ∆i|#({y ∈ ∆j|(x, y) ∈ EM , y ∈ CM}) ≤ n}

• ≥ nE.(j:C) : {x ∈ ∆i|#({y ∈ ∆j|(x, y) ∈ EM , y ∈ CM}) ≥ n}

where M = 〈{mi}, {EM}E∈Eij
〉 is a model of the E-connected ontology, mi is the local model of

Li; C is a concept in Lj , with interpretation CM = Cmj ; EM ⊆ ∆i ×∆j is the interpretation of a
E-connection E.
E-connection restricts the terms of modules, as well as their local domains, to be disjoint. This
can be a serious limitation in some scenarios, particularly because, to enforce domain disjointness,
subclass relations cannot be declared between concepts of two different modules.

3.2.4 Integrated Distributed Description Logics

IDDL [Zim07] is another formalism for distributed reasoning upon networked DL knowledge base.
Similarly to DDL, an IDDL interpretation allocates a different interpretation to each ontology but
instead of relating domains directly, they are correlated in another domain called global domain of
interpretation. The intuition behind this formalism is that ontology mappings may be provided by
third party agents which assert correspondences from a point of view encompassing both mapped
ontologies. With that perspective in mind, using directional bridge rules like DDL is quite unsatis-
factory. A consequence of the semantics of this formalism is the transitivity of ontology mappings.
This formalism instantiates a generic distributed semantics presented in [ZE06] in the case of on-
tologies represented in description logics. The notion of equalising function –i.e. an abstract func-
tion that is part of the global interpretation and map elements of a local domain to elements of the
global domain– is used to correlate local domains of interpretation from different ontologies into a
unique global domain. The generic semantics is used in Chapter 5.

3.3. EXTRACTING MODULES FROM EXISTING ONTOLOGIES 21

3.3 Extracting Modules from Existing Ontologies

We consider in this section techniques and tools that have been developed to help users in
extracting or creating modules from existing, and potentially large scale ontologies. We start our
analysis by briefly introducing notations and distinguishing two major types of techniques: Ontology
module extraction techniques and ontology partitioning. We then describe different techniques in
each of these categories. A more complete analysis of these tools can be found in [dSSS07] and a
proposal for a common framework to unify these techniques can be found in [dDMT07].

Notations. We consider an ontology O as a set of axioms (subclass, equivalence, instantiation,
etc.) and the signature Sig(O) of an ontology O as the set of entity names occurring in the axioms
of O, i.e. its vocabulary.
In the following, we deal with several approaches for ontology modularization, having different as-
sumptions about the definition of an ontology module. The assumption we adopt as a basis for
our discussion is that a module is considered to be a significant and self-contained sub-part of an
ontology. Therefore, a module Mi(O) of an ontology O is also a set of axioms (an ontology), such
that Sig(Mi(O)) ⊆ Sig(O).

Ontology Partitioning. The task of partitioning an ontology is the process of splitting up the set
of axioms into a set of modules {M1, · · · ,Mk} such that each Mi is an ontology and the union
of all modules is semantically equivalent to the original ontology O. Note that some approaches
being labeled as partitioning methods do not actually create partitions, as the resulting modules
may overlap. There are several approaches for ontology partitioning that have been developed for
different purposes.
The approach of [MMAU03] aims at improving the efficiency of inference algorithms by localizing
reasoning. For this purpose, this technique minimizes the shared language (i.e. the intersection
of the signatures) of pairs of modules. A message passing algorithm for reasoning over the dis-
tributed ontology is proposed for implementing resolution-based inference in the separate modules.
Completeness and correctness of some resolution strategies is preserved and others trade com-
pleteness for efficiency.
The approach of [GPSK05] partitions an ontology into a set of modules connected by ε-
Connections. This approach aims at preserving the completeness of local reasoning within all
created modules. This requirement is supposed to make the approach suitable for supporting se-
lective use and reuse since every module can be exploited independently of the others.
A tool that produces sparsely connected modules of reduced size was presented in [SK04]. The
goal of this approach is to support maintenance and use of very large ontologies by providing
the possibility to individually inspect smaller parts of the ontology. The algorithm operates with a
number of parameters that can be used to tune the result to the requirements of a given application.

Module Extraction. The task of module extraction consists in creating a new module by reducing
an ontology to the sub-part that covers a particular sub-vocabulary. This task has been called
segmentation in [SR06] and traversal view extraction in [NM04]. More precisely, given an on-
tology O and a set SV ⊆ Sig(O) of terms from the ontology, a module extraction mechanism
returns a module MSV , supposed to be the relevant part of O that covers the sub-vocabulary
SV (Sig(MSV) ⊇ SV). Techniques for module extraction often rely on the so-called traversal

3.4. ONTOLOGY ALGEBRA 22

approach: starting from the elements of the input sub-vocabulary, relations in the ontology are
recursively “traversed” to gather relevant (i.e. related) elements to be included in the module.
Such a technique has been integrated in the PROMPT tool [NM04], to be used in the Protégé envi-
ronment. This approach recursively follows the properties around a selected class of the ontology,
until a given distance is reached. The user can exclude certain properties in order to adapt the
result to the needs of the application.
The mechanism presented in [SR06] starts from a set of classes of the input ontology and extracts
related elements on the basis of class subsumption and OWL restrictions. Some optional filters can
also be activated to reduce the size of the resulting module. This technique has been implemented
to be used in the Galen project and relies on the Galen Upper Ontology.
In [Stu06a], the author defines a viewpoint as being a sub-part of an ontology that only contains
the knowledge concerning a given sub-vocabulary (a set of concept and property names). The
computation of a viewpoint is based on the definition of a viewpoint dependent subsumption relation.
Inspired from the previously described techniques, [dSM06] defines an approach for the purpose
of the dynamic selection of relevant modules from online ontologies. The input sub-vocabulary
can contain either classes, properties, or individuals. The mechanism is fully automatized and is
designed to work with different kinds of ontologies (from simple taxonomies to rich and complex
OWL ontologies) and relies on inferences during the modularization process.
Finally, the technique described in [DTI07] is focused on ontology module extraction for aiding an
Ontology Engineer in reusing an ontology module. It takes a single class as input and extracts a
module about this class. The approach it relies on is that, in most cases, elements that (directly or
indirectly) make reference to the initial class should be included.

3.4 Ontology Algebra

As modular ontologies are made of the combination of different ontology modules, operators are re-
quired to support the ontology designer in composing modules, creating them, and more generally,
manipulating them. There have been a few studies on possible operators in an ontology algebra
and, since an ontology module is essentially an ontology, these can be a source of inspiration for
an ontology module algebra.
In [Wie94], Wiederhold defines a very simple ontology algebra, with the main purpose of facilitating
ontology-based software composition. He defines a set of operators applying set-related operations
on the entities described in the input ontologies, and relying on equality mappings (=) between
these entities. More precisely, the three following operators are defined.

Intersection(O1, O2) → O create an ontology O containing the common (mapped)
entities in O1 and O2.

Union(O1, O2) → O create an ontology O containing the entities
of O1 and O2, and merging the common ones.

Difference(O1, O2) → O create an ontology O containing only the entities
of O1 that are not mapped to entities of O2

In the same line of ideas, but in a more formalized and sophisticated way, [MBHR04] describes a
set of operators for model management, as defined in the RONDO platform [MRB03]. The goal
of model management is to facilitate and automatize the development of metadata-intensive appli-
cations by relying on the abstract and generic notion of model of the data, as well as on the idea

3.4. ONTOLOGY ALGEBRA 23

of mappings between these models. An essential part of a platform for model management is a
set of operators to manipulate and combine these models and mappings. [MBHR04] focuses on
formalizing a core set of operators: Match, Compose, Merge, Extract, Diff and Confluence. Match
is particular in this set. It takes 2 models as an input and returns a mapping between these models.
It inherently does not have a formal semantics as it depends on the technique used for matching,
as well as on the concrete formalism used to describe the models and mappings. Merge intuitively
corresponds to the Union operator in [Wie94]: it takes two models and a mapping and creates a
new model that contains the information from both input models, relying on the input mapping. It
also creates two mappings from the created model to the two original ones. Extract creates the
sub-model of a model that is involved in a mapping and Diff the sub-model that is not involved in a
mapping. Finally, compose and confluence are mapping manipulation operators creating mappings
by merging or composing other mappings.
[KFWA06] defines operators for combining ontologies created by different members of a community
and written in RDF. This paper first provides a formalization of RDF to describe set-related operators
such as intersection, union and difference. It also adds other kind of operators, such as the quotient
of two ontologies O1 and O2 (collapsing O2 into one entity and pointing all the properties of O1 to
entities of O2 to this particular entity) and the product of two ontologies (inversely, extending the
properties of from O1 to O2 to all the entities of O2). It is worth mentioning that such operators can
be related to the ones of relational algebras, used in relational database systems.
Note finally that the OWLTools1 that are part of the KAON2 framework include operators such as diff,
merge and filter working at the level of ontology axioms. For example, merge creates an ontology
as the union of the axioms contained in the two input ontologies.

1http://owltools.ontoware.org/

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 24 of 49

Chapter 4

Syntaxes and Metamodel

In this chapter, we propose the definition of a formalism for ontology modularization, focusing on the
aspects related to the syntax. We first look at the requirements for such a formalism, as extracted
from the use cases and from the state-of-the-art. Three definitions of the language in terms of
syntax are then proposed: an abstract syntax –used to define the elements of the formalism and
employed as a notation in this report, the metamodel of the modularization formalism –used to
integrate this formalism with the other parts of the NeOn knowledge model and as a reference
for implementation– and finally, a proposal for a concrete syntax based on OMV –used to actually
encode the description of ontology modules.

4.1 Requirements for a Module Definition Language

A Module is an Ontology. As shown in the previous overview, there is generally no clear distinc-
tion between the notion of ontology and the one of ontology module. A modular ontology is made
of smaller local ontologies that can be seen as self-contained and inter-related modules, combined
together for covering a broader domain. Indeed, an ontology is not inherently a module, but rather
plays the role of a module for other ontologies because of the way it is related to them in an ontol-
ogy network. In other terms, an ontology module is a self-contained ontology, seen according to a
particular perspective, namely reusability. The content of an ontology module does not differ from
the one of an ontology, but a module should come with additional information about how to reuse it,
and how it reuse other modules.

Encapsulation / Information Hiding. The idea of encapsulation is crucial in modular software
development, but has not really been studied and implemented in the domain of ontologies yet. In
software engineering, it relies on the distinction between the implementation, i.e. internal elements
manipulated by the developer of the module, and the interface, i.e. the elements that are exposed
to be reused. This distinction between interface and implementation cannot be clearly stated when
using ontology technologies like OWL. However, the essential role of a module interface is to guide
the reusability of the module, by exposing reusable elements and hiding intermediary internal ones
(the "implementation details"). By defining the set of reusable entities of an ontology module (the
export interface), the developer of this module provide entry points to it, and clearly states which
are the elements that can be "safely reused" (e.g. the ones that are considered stables). Elements
that are hidden behind the interface can then evolve, be re-designed or changed, without affecting
the importing modules relying on this export interface.

2006–2008 c© Copyright lies with the respective authors and their institutions.

4.2. ABSTRACT SYNTAX 25

Partial Import. As already mentioned, the owl:imports mechanism has been criticized in
several papers for being "global" (see e.g. [VOM02, PSZ06]): it is not possible when using this
mechanism to import only the relevant and useful elements in the importing ontology. Allow-
ing partial import has many advantages, among which scalability is probably the most obvious.
For this reason, some intermediary solutions have been recently proposed, using, prior to im-
port, ontology partitioning [SK04, GPSK05] techniques or some forms of reduction to a sub-
vocabulary [SR06, Stu06b, dSM06]. We believe that the set of elements that are used in an import-
ing module should be explicitly stated in the module definition, so that the influence of the imported
module is clarified. The semantics of the module definition language should reflect the idea of
partial import by "ignoring" the definitions that are not related to the imported elements (the import
interface), preventing the importing module to deal with irrelevant knowledge, and giving the devel-
oper of such a module the possibility to ignore the parts of the imported modules he/she does not
want to commit to.

Links Between Modules. The formalisms for modular ontologies presented in the previous sec-
tion can be divided in two main approaches: importing and linking. The previous requirements are
focused on the importing approach, whereas languages like C-OWL and E-connection exclusively
deal with the linking approach. In the NeOn framework, these two aspects are relevant, and should
be considered together: even when they are not imported, elements from different modules can
be related through mappings. The NeOn metamodel already provides the required elements for
expressing mappings, and these can easily be considered as a part of the content of an ontology
module. However, it is important to take this aspect into account when designing the semantics of
the module description language, as well as the operations for manipulating modules, so that the
two approaches, importing and linking, are well integrated. Indeed, scenario where, for example,
there exist mappings between imported modules are not hard to imagine.

4.2 Abstract Syntax

The goal of this section is to come up with an abstract syntax for the ontology modularization
formalism, identifying the necessary information to be accommodated in an ontology module as
well as structural properties of a modularized networked ontology. This will be done on a solid
formal basis which will enable us to define a corresponding semantics at a later stage.
We start by defining sets of identifiers being used for unambiguously referring to ontology modules
and mappings that might be distributed over the Web. Obviously, in practice, URIs will be used for
this purpose. So we let

• IdModules be a set of MODULE IDENTIFIERS and

• IdMappings be a set of MAPPING IDENTIFIERS, where a mapping is a set of relations (corre-
spondences) between entities of two different ontologies.

Next we introduce generic sets describing the used ontology language. They will be instantiated
depending on the concrete ontology language formalism used (e.g., OWL). Hence, let:

• Nam be a set of NAMED ELEMENTS.
In the case of OWL, Nam will be thought to contain all class names, property names and
individual names.

4.2. ABSTRACT SYNTAX 26

• Elem be a the set of ONTOLOGY ELEMENTS.
In the OWL case Elem would contain e.g. all complex class descriptions. Clearly, Elem will
depend on Nam (or roughly speaking: Nam delivers the “building blocks” for Elem).

• We use L : 2Nam → 2Elem to denote the function assigning to each set P of named elements
the set of ontology elements which can be generated out of P by the language constructs1,

• For a given set O of ontology axioms, let Sig(O) denote the set of named elements occurring
in O, so it represents those elements the axioms from O deal with.

Having stipulated those basic sets in order to describe the general setting, we are now ready to
state the notion of an ontology module on this abstract level.

Definition 1 An ONTOLOGY MODULE OM is a tuple 〈id , Imp, I,M,O,E〉 where

• id ∈ IdModules is the identifier of OM

• Imp ⊆ IdModules is a set of identifiers of imported ontology modules (referencing those other
modules whose content has to be (partially) incorporated into the module),

• I is set {Iid}id∈Imp of IMPORT INTERFACES, with Iid ⊆ Nam (characterizing which named
elements from the imported ontology modules will be “visible” inside OM),

• M ⊆ IdMappings is a set of identifiers of imported mappings (referencing – via mapping iden-
tifiers – those mappings between ontology modules, which are to be taken into account in
OM),

• O is a set of ONTOLOGY AXIOMS (hereby constituting the actual content of the ontology),

• E ⊆ Sig(O) ∪
⋃

id∈Imp Iid is called EXPORT INTERFACE (telling which named entities from
the ontology module are “published”, i.e., can be imported by other ontology modules).

As a simple example, let us consider an ontology moduleOMi (with module identifier i) completely
importing another ontology module OMk (with module identifier k) and exporting everything:
OMi = 〈i, {k}, {Sig(Ok)}, ∅, Oi, Sig(Oi) ∪ Sig(Ok)〉
Note that, in order to simplify the notation, we will not specify explicitly an identifier for the module:
a module OMi will be considered as implicitly having “OMi” as identifier and will so be written:
OMi = 〈Impi, Ii,Mi, Oi, Ei〉.

In a further step we formally define the term mapping (which is supposed to be a set of directed
links, correspondences, between two ontology modules establishing semantic relations between
their entities).

Definition 2 A MAPPING M is a tuple 〈s, t, C〉 with

• s, t ∈ IdModules, with s being the identifier of the source ontology module and t being the
identifier of the target ontology module,

• C is a set of CORRESPONDENCES of the form e1 e2 with e1, e2 ∈ Elem and ∈ R for a
fixed set R of CORRESPONDENCE TYPES2

1In most cases – and in particular for OWL – L(P) will be infinite, even if P is finite.
2In accordance with the NeOn metamodel, this set will be fixed to R = {v,w,≡,⊥, 6v, 6w, 6≡, 6 ⊥}

4.3. METAMODEL 27

Figure 4.1: Metamodel extensions for ontology modules.

4.3 Metamodel

We propose a generic metamodel for modular ontologies according to the design considerations
discussed above. The metamodel is a consistent extension of the metamodels for OWL DL ontolo-
gies and mappings [HBP+07].
Figure 4.1 shows elements of the metamodel for modular ontologies. The central class in the
metamodel is the class OntologyModule. A module is modeled as a specialization of the class
Ontology. The intuition behind this modeling decision is that every module is also considered an
ontology, enriched with additional features. In other words, a module can also be seen as a role that
a particular ontology plays. In addition, an ontology provides (at most) one ExportInterface
and a set of ImportInterface. The interfaces define the elements that are exposed by the
imported module and reused by the importing module. The elements that can be reused by modules
are MappableElements (defined in the mapping metamodel). A mappable elements is either
an OWLEntity or a Query over an ontology, meaning that entities can be exposed in interfaces
either directly or as the results of queries.
The export interface, modeled via the exports association, exposes the set of
OntologyElements that are intended to be reused by other modules.
The reuse of elements from one module by another module is represented via the
ImportInterface. The association imports relates the importing module with the defini-
tion of the imports interface. The association importedModule refers to the module that is
being imported, while the association importedElement refers to the element in the imported
ontology being reused. In this sense, the ImportInterface can be seen to realize the ternary
relationship between the importing ontology, the imported ontology, and the elements to be reused.
Additionally, a Module also provides an imports relationship with the Mapping class, which is
used to relate different ontology modules via ontology mappings.

4.4. CONCRETE SYNTAX 28

URI
...

omv:Ontology

URI
...

omva:Mapping

URI
...

mod:OntologyModule
EntityURIs
mod:ExportInterface

EntityURIs
mod:ImportInterface

1

includedMappings
*

1

1

importedModule

imports

exports
contains

Figure 4.2: Overview of the OMV extension for Ontology Modules.

4.4 Concrete Syntax

In order for the modularization formalism to be usable, it requires at least one concrete syntax
that implements the elements of the abstract syntax and of the metamodel at a technological level.
Ideally, this syntax should integrate with OWL in a non-intrusive and backward compatible way, to
keep the definition of modules as flexible as possible. In particular it is important that standard
tools for OWL that would not support our modularization mechanism could ignore the definition of
modules and continue to work in the same way, even if they would obviously not take benefit from
the features provided by modularization.
We made the choice to implement this concrete syntax as an extension of OMV [HSH+05a]. OMV
is a ontology metadata vocabulary, and it could appear strange to define modules as ontology
metadata, but according the above definitions, an ontology module is nothing but an ontology asso-
ciated with additional information regarding interfaces and mappings. Of course, these “metadata”
would have an influence on the semantics of the module, so this choice is still questionable. How-
ever, OMV already includes definitions for ontologies and mappings, and we would anyway have to
define a metadata descriptor for modules that would include the same information.
Figure 4.2 describes the OMV extension for modularization (blue classes are classes already in
OMV or in the mapping extension, and the red ones are new). It is built in accordance with
the metamodel. For example, a module http://example.org/A, encapsulating an ontol-
ogy http://example.org/O, importing several entities from modules http://example.
org/B and http://example.org/C, exporting the entities http://example.org/A#X,
http://example.org/A#Y and http://example.org/B#Z, and including the mappings
http://example.org/M and http://example.org/N would be described in the follow-
ing way:

<mod:OntologyModule rdf:ID="http://example.org/A">
<mod:contains>

<omv:Ontology rdf:about="http://example.org/O" />
</mod:contains>
<mod:exports>

<mod:ExportInterface>
<mod:interfaceElement rdf:resource="http://example.org/A#X" />
<mod:interfaceElement rdf:resource="http://example.org/A#Y" />
<mod:interfaceElement rdf:resource="http://example.org/B#Z" />

</mod:ExportInterface>
</mod:exports>
<mod:imports>

<mod:ImportInterface>

4.5. EXAMPLES 29

<mod:importedModule rdf:resource="http://example.org/B" />
<mod:interfaceElement rdf:resource="http://example.org/B#U" />
<mod:interfaceElement rdf:resource="http://example.org/B#V" />
<mod:interfaceElement rdf:resource="http://example.org/B#Z" />

</mod:ImportInterface>
<mod:ImportInterface>

<mod:importedModule rdf:resource="http://example.org/C" />
<mod:interfaceElement rdf:resource="http://example.org/C#T" />

</mod:ImportInterface>
</mod:imports>
<mod:includedMapping>

<omva:Mapping rdf:about="http://example.org/M" />
</mod:includedMapping>
<mod:includedMapping>

<omva:Mapping rdf:about="http://example.org/N" />
</mod:includedMapping>

</mod:OntologyModule>

4.5 Examples

One of the goals of the NeOn modularization language is to provide a mean for ontology engineers
to develop ontologies in a modular way, specifying the behavior and role of the ontology modules
involved in this development. Example 1 Section 2.1 corresponds to such a scenario: the fishery
ontology is made of several modules, corresponding to different sub-domains of the fishery do-
main (fish species, vessels, techniques, etc.). Each of these modules can be specified using the
proposed syntaxes, to indicate their dependencies, interconnections and contributions (exports) to
the modular ontology. For example, the species module would be declared as taking its content
from the species ontology (http://www.fao.org/aims/aos/fi/species_v1.0.owl)
and exporting the entities corresponding to species of fishes of interest for the application (that can
be all of them). In the proposed abstract syntax, this would correspond to3:

species_onto = http://www.fao.org/aims/aos/fi/species_v1.0.owl

species_entities = {species,Goldspotted spinef,Marbled octopus, . . . }
species_module = 〈∅, ∅, ∅, species_onto, species_entities〉

Now considering that the (OWL translation of the) AGROVOC thesaurus also contains descriptions
of fish species, it can be envisaged to replace the species module of the fishery ontology by an
alternative one, having AGROVOC for content and exporting from it only entities corresponding to
fishery species:

agrovoc = http://www.fao.org/agrovoc/

species_entities = {species,Goldspotted spinef,Marbled octopus, . . . }
species_module = 〈∅, ∅, ∅, agrovoc, species_entities〉

This alternative provides the same elements as the previous one and so, can play the same role in
the application: since the actual content of the module is encapsulated, it can be easily replaced
or modified without having to re-consider the applications relying on the module. Note that if the
content of AGROVOC needs to be adapted to fit the module specification, another way to achieve
the same result is to create a module importing AGROVOC, together with an ontology (the content
of the module) defining additional axioms for the adaptation of AGROVOC.

3note that the identifiers of the entities have been replace by the name of the species

4.5. EXAMPLES 30

Once all the modules of the considered application are specified, an overall module can be built by
importing the “component modules”:

species_onto = http://www.fao.org/aims/aos/fi/species_v1.0.owl

species_entities = {species,Goldspotted spinef,Marbled octopus, . . . }
vessels_onto = http://www.fao.org/aims/aos/fi/vessels_v1.0.owl

vessels_entities = {. . . }
land_areas_onto = . . .

fishery_module = 〈{species_onto, vessels_onto, land_areas_onto, . . . },
{species_entities, vessels_entities, . . . }, ∅, ∅, exported_entities〉

Of course, one of the interest of modular design is that the modules can be combined differently for
different applications, importing only the relevant ones, and even only the relevant parts of them.
We can easily imagine, building another module for an application only interested in some particular
fishery gears and in some particular vessels (using these gears):

gears_onto = http://www.fao.org/aims/aos/fi/gears_v1.0.owl

gears_entities = {gears of interest . . . }
vessels_onto = http://www.fao.org/aims/aos/fi/vessels_v1.0.owl

vessels_entities = {vessels of interest . . . }
module = 〈{gears_onto, vessels_onto}, {gears_entities, vessels_entities},

∅, ∅, exported_entities〉

Finally, in most of the cases, the content of imported modules need to be aligned, so that they
can be used jointly. This is achieved by specifying mappings between the entities of the imported
module. Here for example, a mapping can be specified in the overall module to align the fishing
area module with the land area module, or to relate gears with the associated vessels:

gears_onto = http://www.fao.org/aims/aos/fi/gears_v1.0.owl

gears_entities = {gears of interest . . . }
vessels_onto = http://www.fao.org/aims/aos/fi/vessels_v1.0.owl

vessels_entities = {vessels of interest . . . }
vessels_gears_mapping = http://www.fao.org/mappings/vessels_gears

module = 〈{gears_onto, vessels_onto}, {gears_entities, vessels_entities},
{vessels_gears_mappings}, ∅, exported_entities〉

Example 2 Section 2.2 also provides a good illustration of one of the principles of the modularization
language as described above: partial import. Indeed, in this example, a module is to be created for
representing invoice related information, by reusing the part of the EDIFACT ontology that concerns
invoices. Therefore, this module would import the EDIFACT ontology restricted, through the import

4.5. EXAMPLES 31

interface, to the entities related to the Invoice class. The content of this module can integrate these
imported entities and the ontology designer can decide whether or not they have to be exported,
exposing them as reusable elements or hiding them as implementation artifact.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 32 of 49

Chapter 5

Semantics

In order to reason with modular ontologies, we have to define the semantics of the module definition
language we are using, i.e., define interpretations and models of a module upon which entailment
is defined.
Before describing the actual semantics we define for modular ontologies, we take a look at the
requirements wrt semantics (Section 5.1). Then, the semantics of the local content of a module is
defined in a classical model theoretic way (Section 5.2). Mappings between imported modules have
their own semantics described in Section 5.3. According to the semantics of these two components,
we define interpretations and models of a module by using a generic semantics proposed in [ZE06].

5.1 Requirements for the semantics of modular ontologies

The main problem when dealing with the semantics of networked ontologies is about heterogeneity.
Since we want to connect and reason with ontologies that may have been developed independently,
possible discrepancies may exist between two ontologies. Not only differences in terms but also in
the modelling of a knowledge domain. A possible way to treat this problem is by revising knowledge
when incoherence exists. This issue is discussed in deliverable D1.2.1 and D1.2.2 about resolving
inconsistencies. However, it is not always possible to revise knowledge because one may not be
able to enforce revision for a module developed separately, possibly by another party.
So another solution to the problem is to use or define non standard semantics for distributed or mod-
ular ontologies. Chapter 3 already discussed existing formalisms. We can sort these formalisms
according to their robustness to heterogeneity. Robust formalisms are the ones which impose the
loosest between interpretations of the local ontologies. Conversely, less robustness means tighter
connections. The list of formalisms from the tightest to the loosest is as follows: DL → P-DL →
IDDL → DDL/E-Connection → no connection. The tightest formalism is classical DL (like OWL)
which enforces each module to be interpreted in the same domain. P-DL may have different do-
mains but strongly connected. IDDL allows arbitrary domains but connect them to a global domain
via functions, which allows mapping composition while keeping somewhat high robustness. DDL
and E-connection connect interpretation very loosely, but bridge rules and links are not transitional.
The loosest formalism possible (which we call “no connection”) corresponds to having completely
separate and unrelated interpretations for each ontology in a distributed system. This is not very
useful for modularisation but may be useful to obtain separate answers according to different view
points.
For our purposes, we need a formalism for reasoning with modules that may have been developed
separately. Interpreting all the modules as one big ontology would not be appropriate, so this ex-

2006–2008 c© Copyright lies with the respective authors and their institutions.

5.2. SEMANTICS OF THE LOCAL CONTENT OF MODULES 33

clude the classical DL semantics. P-DL is much more appropriate since it allows partial reuse of
ontologies and each module may have a different interpretation. However there is no support for
ontology mapping. Therefore, semantic relations between modules must be represented by axioms
in the importing module. Unfortunately, the semantics of P-DL imposes that imported concepts
have the very same interpretation in the importing and imported module. Consequently, if a con-
cept has a certain number of instances, it must have the very same instances in the importing
module. Although this is adequate when the whole modular ontology is designed in a well delim-
ited environment, it reduces robustness to heterogeneity quite a lot. In particular, the use cases
presented in Chapter 2 are not totally compliant with this feature. DDL is more adapted to hetero-
geneous environments. Yet, bridge rules have several disadvantages with respect to the situation
of networked ontologies. First, they are not transitive, which restrains their reusability. Second,
they express knowledge about the system from one particular ontology point of view. This implies
that the knowledge they are describing only concerns the ontology toward which the rules are di-
rected. Consequently, bridge rules are not appropriate for representing mappings, which are often
produced from a standpoint encompassing both mapped ontologies. E-connection, though different
in its principles, suffer from the same disadvantages.

Syntax level O1

I1
��

O2

I2
��

··· On

In
��

Local semantics level D1

ε1
##GGGGGGGGD2

ε2
��4

44
44

4
··· Dn

εn
{{ww

ww
ww

ww

Global semantics level U

···

···

�� ���� ��
�� ���� ��

�� ���� ��

Figure 5.1: This figure shows the interpretations of local ontologies, which are correlated into a
global domain through the equalizing function ε. Mappings are interpreted in the global domain.

IDDL offers a good compromise between robustness to heterogeneity and knowledge propagation.
It is mostly based on the principle that ontology mappings are produced by third party tools or
agents, so they have to be treated at a separate level. It distinguishes reasoning locally with one
ontology and reasoning with the whole network of ontologies and mappings by relying on local
interpretations for ontologies, that are mapped into a unique global domain (see Figure 5.1 where
Ii represents a local interpretation for Oi, relying on the local domain Di, and U is the global
domain, integrating a local domain Di through an "equalising function" εi). For the purpose of
modular ontologies, it means that imported ontologies behave as a network of ontologies, and the
importing module represents the global system.

5.2 Semantics of the local content of modules

Interpreting the local content of a module is equivalent to interpreting axioms of a non-modular
ontologies. Since the formalism used to write axioms in our module framework is based on OWL,
this local semantics corresponds to a description logic semantics.

Definition 3 (Interpretation) Given a set of ontology elements Elem (individuals, classes and
properties), an INTERPRETATION of Elem is a pair 〈∆, [[.]]〉, where

∆ is a non-empty set, called the DOMAIN,

5.3. SATISFIED MAPPING 34

[[.]] is a function from Elem to ∆ ∪ P(∆) ∪ P(∆×∆), where P(x) is the part set of x.

In our specific case (considering OWL), the function [[.]] maps

• an individual a to an element of ∆: [[A]] ∈ ∆

• a class C to a subset of ∆: [[C]] ⊆ ∆

• a property p to a binary relation between elements of ∆: [[p]] ⊆ ∆×∆

In fact, an interpretation of the named elements Nam, uniquely defines an interpretation of the
ontology elements by applying inductive interpretation rules:

• [[C uD]] = [[C]] ∩ [[D]],

• [[C tD]] = [[C]] ∪ [[D]],

• [[∃R.C]] = {x|∃y.y∈ [[C]] ∧ 〈x, y〉∈ [[R]]},

• etc.

Interpretations are related to axioms thanks to the satisfaction relation |=.

Definition 4 (Satisfaction) An interpretation 〈∆, [[.]]〉 satisfies:

• an axiom C v D if [[C]] v [[D]]

• an axiom C(a) if [[a]] ∈ [[C]]

• an axiom p(a,b) if ([[a]], [[a]]) ∈ [[p]]

If an interpretation I satisfies an axiom α, it is denoted by I |= α.

The local content of a module is characterized by a set of axioms.

Definition 5 An interpretation is a model of a set of axioms O if it satisfies all the axioms in O. The
set of models of a set of axioms O is denoted Mod(O).

5.3 Satisfied mapping

A mapping connects entities from 2 different ontologies or modules. Interpreting them implies
interrelating both ontology (or module) interpretations.
Entities appearing in a correspondence can be interpreted according to the ontology language
semantics. Since each ontology may be interpreted in different domains, we define a notion of
equalising function which helps making these domains commensurate.

Definition 6 (Equalising function) Let Ω be a set of ontologies and for all o ∈ Ω, Io = 〈∆o, [[.]]o〉
be an interpretation of o. An equalising function ε for (Io)o∈Ω assigns to each o a function εo : ∆o →
∆ to a common global domain of interpretation ∆.

5.4. GLOBAL INTERPRETATION OF MODULES 35

Besides, the mapping language defines a set of relation symbols that are used to express relations
between ontology entities. The interpretation of such relation is defined by the mapping language
semantics, according to the global domain of interpretation. More precisely, each relation symbol
r ∈ R and each global domain ∆ is associated to a binary relation r∆ ⊆ ∆×∆.
In this deliverable, the mapping language is characterized by the relation symbols R = {v,w,≡
,⊥, 6v, 6w, 6≡, 6 ⊥}. The binary relations associated to them are: set inclusion r∆ = {(X, Y) ∈
∆ × ∆ | X ⊆ Y }, set containment r∆ = {(X,Y) ∈ ∆ × ∆ | X ⊇ Y }, set equality r∆ =
{(X, Y) ∈ ∆ × ∆ | X = Y }, set disjunction r∆ = {(X,Y) ∈ ∆ × ∆ | X ∩ Y = ∅}, and their
complements.
Using these notions, we can determine whether a correspondence is satisfied by the interpretations
of the mapped ontologies.

Definition 7 (Satisfied correspondence) Let c = 〈e1, e2, r〉 be a correspondence in a mapping
between O1 and O2. A correspondence is satisfied by two interpretations I1 = 〈∆1, [[.]]1〉 and
I2 = 〈∆2, [[.]]2〉 of O1 and O2 respectively, if there exists an equalising function ε for (I1, I2) over
global domain ∆ such that (ε1([[e1]]1), ε2([[e2]]2)) ∈ r∆. This is written I1, I2 |=ε c.

For instance, consider the correspondence c = 〈Cottage1, Building2,v〉, then I1, I2 |= c iff
ε1([[Cottage1]]) ⊆ ε2([[Building1]]).

Definition 8 (Satisfied mapping) A mapping A of ontologies O1 and O2 is satisfied by a pair of
interpretations 〈I1, I2〉 if there exists an equalising function ε of 〈I1, I2〉 such that for each c ∈ A,
I1, I2 |=ε c.

Note that a mapping can be satisfied by interpretations that are not themselves models of the local
ontologies. This is useful when one needs to determine consistency of a mapping, but do not have
access to the ontologies. Moreover, this also ensures encapsulation at the mapping level, since it
prevents mapping satisfiability to be dependent on a particular ontology implementation.

5.4 Global interpretation of modules

The interpretation of a module is recursively defined in function of the interpretations of its imported
modules.
This recursive definition assumes that there is no cycle in the import chain, so each chain eventually
leads to a base module with no import. Detection of cycles should be syntactically checked, since
this definition is not well founded otherwise. If one thinks in term of software engineering, this is not
a major limitation. Indeed, when a new module is designed, it has to import existing modules. This
way, it is not possible to have cyclic references.

Definition 9 (Base module interpretation) Let M = 〈∅, ∅, ∅, O,E〉 be a base module. An inter-
pretation of M is a local interpretation I of the content O of M, with domain of interpretation D.

A module interpretation is defined recursively according to the import chain.

Definition 10 (Module interpretation) Let M = 〈M, I,A,O,E〉 be a module. An interpretation
of M is a triple I = 〈I, (Im)m∈M , ε〉 such that:

5.4. GLOBAL INTERPRETATION OF MODULES 36

• For each imported module m ∈ M , Im is a module interpretation of m over domain of
interpretation Dm;

• ε is an equalising function for (Im)m∈M , over a global domain of interpretation ∆;

• I = 〈∆, [[.]]〉 is a (local) interpretation of the content O of M, with domain of interpretation ∆.
∆ is also called the domain of interpretation of module M;

• the interpretation of the imported terms tm ∈ Im of module m ∈ M is defined by [[tm]] =
εm([[tm]]m).

In order for an interpretation to satisfy a module, there are three conditions:

1. the local interpretation must be a model of the content of the module, i.e., all local axioms
must be satisfied;

2. the imported modules must be satisfied by their respective interpretations;

3. the mappings between the imports must be satisfied by the respective pairs of interpretations;

Definition 11 (Model of a module) Let M = 〈M, I,A,O,E〉 be a module and I =
〈I, (Im)m∈M , ε〉 a module interpretation of M. I is a model of M (written I |= M) iff:

• for each imported module m ∈M , Im |= m (i.e., each imported module is locally satisfied);

• I is a model of O (i.e., the local content of M is satisfied);

• for each pair of modules m,m′ ∈M , Im, Im′ |= Am,m′ (i.e., all mappings are satisfied).

The set of all the models of a module M is written Mod(M) too.

The notion of models is essential for automatic deduction in modular ontologies. It serves to define
which formulas are semantic consequences of a module (i.e., entailment).

5.4.1 Consequences of a module

In order to reason with modular ontologies, we have to define what are the semantic consequences
of a module. They are defined as follows:

Definition 12 (Consequences of a module) Let M = 〈M, I,A,O,E〉 be a module. Let δ be an
axiom built upon the signature of the content of M (which includes the import interfaces of I). δ is
a consequence of M, written M |= δ iff for all 〈I, (Im)m∈M , ε〉 ∈ Mod(M), I |= δ.

Obviously, if a formula is a consequence of the content ontology of a module, then it is a conse-
quence of the module itself.1 Additionally, it is desirable to derive knowledge about the imported
terms according to the imported modules knowledge. However, if something is true about a con-
cept C in a module, it is not necessarily true in another module that imports C. For instance, in a
description logic knowledge base, if a module m is such that m |= ¬C v D, it does not follow that,
considering a module M = 〈{m}, {C,D}, ∅, ∅, ∅〉, M |= ¬C v D, as the domains of interpretation
of M and m may not be the same.
In order to characterize formulas that can be propagated from a module to its importers, we define a
general notion of locality, inspired by [GHKS07]. A formula is semantically local when its satisfiability
in a module implies its satisfiability in a module that imports its terms.

1Note that only the consequences related to the exported terms are useful to an external module that imports them.

5.4. GLOBAL INTERPRETATION OF MODULES 37

Definition 13 (Semantic locality) Let m be a module. Let α be a formula written in terms of the
export interface. α is semantically local iff for all modules M that uses m and import the terms of
α:

m |= α −→ M |= α

A module m is semantically local iff all its axioms are local.

As seen in [GHKS07], locality can be computationally checked in description logic SHOIQ. Se-
mantic locality is clearly a desirable property to design “safe” modules. Indeed, in a semantically
local module, what is true of a term in the module, is also true in a module that imports it.
So we have given a semantics to ontology modules that is different from owl:import semantics.
In particular, it hides imported module implementation and uses standard mapping semantics to
connect modules together. Since we do not specify the concrete language used for ontologies
and ontology mappings, our framework can be applied to expressive languages, not restricted to a
predefined set of semantic relations. Moreover, separating mappings from the ontology allows for
the manipulation of mappings independently. These features are not present in previous work on
modular ontology formalisms.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 38 of 49

Chapter 6

Algebra

In this chapter, we identify and explain operators that are useful in manipulating and combining mod-
ules. We provide the semantics of these operators relying on the notion of consequence defined
in the previous chapter (|=), alternative definitions that comply with this semantics, and illustrative
examples of the usefulness of these operators.
We distinguish three main categories of operators: binary operations for composing modules (in-
tersection, union, difference), operators for extracting sub-modules (decomposition, reduction) and
other kind of operators including purely syntactic operations for facilitating the manipulation of mod-
ules (interface completion, collapse) and the match operator.

6.1 Binary Module Composition Operators

These operators, inspired by operators on sets, produce a module from the composition of two
modules. Their signature is then always Module×Module → Module. These are the operators
that are common in all the ontology algebras described in Section 3.4. They are indeed useful
in many scenarios, in particular when designing modular ontologies from existing modules, like it
is the case for instance in Example 1 Section 2.1: the union of all the modules corresponding to
sub-domains of fisheries provides an initial version of the fisheries ontology.

6.1.1 Union

Description The Union operator creates a new module by merging the content of two other ones.

Semantics for any axiom α, Union(M1,M2) |= α if M1 |= α ∨M2 |= α

Properties commutative, associative, idempotent.

Example In Section 4.5, creating a module from vessels_module and gears_module can be done
by union: Union(vessels_module, gears_module).

Possible definitions A simple way to comply with the semantics of the union operator is that the
created module imports the ones that are combined:

• OMi = 〈Impi, Ii,Mi, Oi, Ei〉 and

• OMj = 〈Impj, Ij,Mj, Oj, Ej〉

2006–2008 c© Copyright lies with the respective authors and their institutions.

6.1. BINARY MODULE COMPOSITION OPERATORS 39

Union(OMi,OMj) = 〈{OMi,OMj}, {Ei, Ej}, ∅, ∅, Ei ∪ Ej〉
Another way to achieve Union is to actually copy and merge the contents of the modules. This
should be computationally more complicated and less flexible, but the newly created module
can then evolve independently of the original ones.

• OMi = 〈Impi, Ii,Mi, Oi, Ei〉 and

• OMi = 〈Impj, Ij,Mj, Oj, Ej〉

Union(OMi,OMj) =< k, ∅, ∅,Mi ∪Mj, Oi ∪Oj, Ei ∪Ej >. Below, a Collapse operator is
defined that retrieves all the information concerning a module locally. Combined with the first
(import) definition of Union, it provides similar properties to this second definition.

6.1.2 Difference

Description The difference of two modules corresponds to the part of the first module that is not
in the second one.

Semantics for any axiom α, Difference(M1,M2) |= α iff M1 |= α ∧M2 6|= α

Properties not commutative, not associative, Difference(M,M) = empty_module

Example The difference operator can be useful to spot changes between different versions of a
module (cf. Example 4 Section 2.4).

Possible Definitions Approximated definitions can be realized by applying set differences to the
elements of the modules. However, a definition complying entirely with the semantics of the
difference operator is more difficult to achieve and requires the use of a reasoner.

6.1.3 Intersection

Description Intersection extracts the common part of two modules.

Semantics for any axiom α, Intersection(M1,M2) |= α iff M1 |= α ∧M2 |= α

Properties commutative, not associative, idempotent.

Example Finding the common part of two modules can be useful to extract a common reusable
pattern employed by both. In addition, it can provide the basis for the definition of other
operators.

Definition If both Union and Difference are defined, intersection can be easily computed in the
following way:

Intersection(OM1,OM2) = Difference(Union(OM1,OM2),

Union(Difference(OM1,OM2), Difference(OM2,OM1)))

Otherwise, approximations can be achieved using the set-intersection of the elements of the
modules, or a reasoner could be used.

6.2. MODULE EXTRACTION OPERATORS 40

6.2 Module Extraction Operators

They are two main approaches for extracting modules from bigger modules or ontologies: decom-
posing it into a set of significant parts or reducing its content according to a particular signature,
relevant for a given application [dSSS07]. As explained in the previous chapters, ideally, ontolo-
gies would be designed in a modular way, so that they would be easier to maintain, reuse, etc.
However, most of existing ontologies are not designed with modularity in mind. In addition, an ap-
propriate module in one application, or one scenario, may need to be reduced, decomposed and
reorganized for other applications and scenarios. This is particularly clear in several of our use
cases that require the extraction of modules for improving performances (Section 2.3), facilitating
the maintenance and exploration of ontologies (Section 2.4), or customizing them (Section 2.5).

6.2.1 Reduction/Module Extraction

Description This operator reduces the content of a module according to a particular interface. It is
supposed to keep only the axioms that have an influence on the interpretation of the entities
in the interface.

Signature Reduce : Module× Interface→Module

Semantics for any axiom α, Reduce(M, I) |= α iff M |= α ∧ Sig(α) ⊆ I .

Properties Reduce(OM, Sig(OM)) = OM, Reduce(OM, ∅) = empty_module

Examples Within the modularization framework, this operator is useful to support the definition of
other operators. It can also be used to compile the content of a module with respect to its
export interface. More importantly, a number of our use cases explicitly rely on the feature
provided by the reduce operator. In particular, Example 3 Section 2.3 details possible ways
in which large ontologies (such as FAO’s species ontology) could be reduced to improve the
performance of ontology-based tools. In the same way, in Example 4 Section 2.4, the reduce
operator can be used to reduce a modified ontology to the part that is related to the change:
in a sense, compiling the semantic context of the entities that have been modified.

Possible definitions [GHKS07] provides a formalization of the notion of modularity –based on the
notion of conservative extension– that complies with the semantics of the reduction operator
as defined here. However, as shown by Example 3 (Section 2.3), there can be many different
ways to extract a module from an ontology, depending on the requirements of the particular
scenario in which this operator is used and on how it defines an appropriate module. For
this reason, there have been a number of different techniques to extract modules, relying on
different criteria and resulting in different modules. [dDMT07] defines a common framework
for ontology module extraction techniques that can be parametrized according to application
requirements. Extraction procedures can be specified using transformation rules to be ap-
plied on the ontology. A number of existing techniques have already been reformulated within
this framework, and new ones, tailored to particular applications, can easily be created.

6.2.2 Reduction by Hiding

Description This operator can be seen as the inverse of the previous one. Instead of reducing
a module to the wanted signature, it reduces the module by removing the given signature,
providing a module that does not mention the elements of this signature.

6.3. MATCH AND OTHER SYNTACTIC OPERATIONS 41

Signature Hide : Module× Interface→Module

Semantics for any axiom α, Hide(M, I) |= α iff M |= α ∧ Sig(α) ∩ I = ∅.

Properties Hide(OM, ∅) = OM, Hide(OM, Sig(OM)) = empty_module

Usages examples This operator is directly motivated by the need for access right support for
ontologies and ontology modules (see Example 5, Section 2.5)), as it can be used to reduce
an ontology to the part a user has the right to see and manipulate.

Possible definitions This operator can be implemented by removing from the content axioms
of the module the elements given as input, replacing them by more general elements not
in this interface. A similar procedure is described and studied in [Stu06a]. In addition,
with an appropriate definition of the Reduce operator, Hide could be defined by the dif-
ference between the original module and its reduction according to the given signature:
Hide(OM, E) = Difference(OM, Reduce(OM, E)).

6.2.3 Decomposition/Partitionning

Description This operator divides an existing module into parts that should correspond to signifi-
cant components. The resulting modules should be related by mappings.

Signature Decompose : Module→ 2Module

Semantics for any axiom α, M |= α iff Union(Decompose(M)) |= α

Properties in some definition, the decomposition result in a partition, meaning that
Intersection(Decomposition(M)) = empty_module, but this is not always the case.

Example Decomposing an existing ontology into modules facilitates the maintenance of the ontol-
ogy and helps in using it, making possible its exploration "by pieces" and the distribution of
reasoning mechanisms (see Sections 2.3 and 2.4).

Possible definitions In the literature, several approaches for semantics preserving partitioning
have been described. For example, [SK04] proposes a partitioning technique based on the
structural properties of the ontology. [GPSK05] presents an approach for generating logical
modules as self-contained units within an ontology and that can be safely extracted without
adding or removing entailments in the signature of other modules.

6.3 Match and Other Syntactic Operations

Here we present operators that do not fall into the previously defined categories. First the Match op-
erator is useful in integrating modules, as it creates mappings between the content of two modules.
The following ones are said to be syntactic in the sense that they have no influence on the seman-
tics of the modules they are applied to: the resulting modules have the same set of consequences
as the given modules. These operators are useful as they simplify the use and manipulation of
ontology modules.

Description Given two modules, the Match operator returns a mapping that holds between the
modules. The mappings are correspondences between the elements of the export interfaces
of the modules.

6.3. MATCH AND OTHER SYNTACTIC OPERATIONS 42

Signature Match : Module×Module→Mapping

Semantics The Match operator inherently does not have a formal semantics. Instead, it finds
correspondences based on heuristics.

Example Creating mappings between modules is useful in any scenario where different modules
need to be integrated, in particular when designing modular ontologies (see Example 1 Sec-
tion 2.1).

Possible Definitions For matching of modules, one can directly reuse the variety of approaches
known from the field of ontology matching and alignment. The concrete implementation of
this operator would rely on the alignment server described in [EdSZ07] and on the matching
techniques it will host.

6.3.1 Collapse

Description Collapsing corresponds to the creation of a new module that contains the same knowl-
edge as the original one, but that physically integrates imported elements.

Signature collapse : Module→Module

Example This can be useful to copy a module locally and use it offline.

Possible Definition Without mappings in the considered module, a simple definition for the Col-
lapse operator could be:

• OM = 〈Imp, I,M,O,E〉

collapse(OM) =< ∅, ∅, ∅, O ∪
⋃
OMi∈Imp content(Reduce(Collapse(OMi), Ii)), E),

where content(〈Imp, I,M,O,E〉) = O and Reduce is the operator defined above. Note
that this definition is recursive and that it would terminate when reaching modules without
import. Therefore, it does not allow cycles in the graph based on the import relation between
modules.

The introduction of mappings would make the definition dependent on the formal semantics
used for the modularization formalism (see Chapter 5). Under certain conditions, it is possible
to transform mapping assertions into local axioms in the content of the collapsed modules.

6.3.2 Interface Completion

Description Interface completion takes two modules and creates the import interface between
these two modules.

Signature completeInterface : Module×Module→ Interface

Definition

• OMi = 〈Impi, Ii,Mi, Oi, Ei〉
• OMj = 〈Impj, Ij,Mj, Oj, Ej〉

CompleteInterface(OMi,OMj) = Sig(Oi) ∩ Sig(Oj)

6.3. MATCH AND OTHER SYNTACTIC OPERATIONS 43

Example When building a module, Interface Completion allows the developer to compute the im-
port interfaces so that the module is valid and minimizes the dependency to the imported
module. It can be useful for example when building a module from a OWL ontology that uses
the owl:imports mechanism, to reduce the part that is imported from external ontologies.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 44 of 49

Chapter 7

Discussion

In this deliverable, we have defined a new formalism for specifying, combining and manipulating
modules. The different elements we have been looking at are: first different syntaxes for this for-
malism, then the semantics of this formalism, and finally, a set of operators to manipulate modules
described in this formalism and constituting an ontology module algebra. The definition of this
language and of these operators is directly motivated by a number of use cases and example sce-
narios occurring in NeOn, and aims at providing a general framework to support these different
visions and needs for ontology modularization. This is not the first attempt at defining a formalism
for modular ontologies and the work presented in this deliverable has been informed by previous
studies. Indeed, elements from related work have been integrated to provide a broader, more
generic framework that is the NeOn formalism for ontology modularization.
There are several aspects that are important in modular ontologies and that have not been con-
sidered in this deliverable. In particular, the implementation of this formalism will be described in
the next NeOn deliverable on ontology modularization (D1.1.4). Moreover, other elements studied
in other tasks of NeOn work package 1 (T1.2 on managing inconsistencies and T.1.3 on change
propagation) should be emphasized in a module ontology framework and will require particular at-
tention. Finally, the definition of the NeOn formalism for ontology modules relates to (and impacts
on) several other activities within the NeOn project, in different work packages.

Implementation. The implementation of the NeOn formalism for ontology modularization first re-
quires the integration of the modularization language into the datamodel of NeOn, in particular as
implemented within the NeOn toolkit. Plugins for the NeOn toolkit should be provided to help on-
tology engineers in specifying modules for their ontologies. Apart from the operators, these plugins
should provide mechanisms to facilitate the definition of modules. It should be possible to simply
transform a standard OWL ontology into an ontology module carrying the same semantics. In ad-
dition, a reasoner handling the definition of ontology modules –as specified using the proposed
concrete syntax– should be provided and should comply with the chosen semantics.
Moreover, the operators of the module algebra will be implemented as a series of plugins for the
NeOn toolkit, but, beyond the simple implementation of the techniques required to execute the op-
erators, the ability to create modules dynamically from operator-based scripts is needed (in a mech-
anism similar to the creation of views in relational database systems). It is important indeed that
the implementation of the algebra makes possible the management of both materialized modules,
which could be manipulated independently of their original ontologies (like in example 3 Section 2.3
for improving performances), and of dynamic modules, which correspond to encapsulations of the
ontologies they are based on (like in example 1 Section 2.1 where the content of the modules are
stored in databases).

2006–2008 c© Copyright lies with the respective authors and their institutions.

CHAPTER 7. DISCUSSION 45

Further considerations. Incompatibility between modules –i.e., combination of modules that cre-
ate inconsistencies– may be encountered when integrating modules from various sources. The
definition of the operators for combining modules do not take into consideration this aspect and
assume that the modules that are integrated are compatible. Also, the dynamic aspect of modules
is an important elements to consider in the future. Indeed, sophisticated mechanisms are required
for making sure that changes operated on a module would not affect other modules relying on it, or
that changes are propagated from imported modules to importing ones and from modified modules
to modules that have been extracted from them.
At a more general level, as part of the work realized in work package 5, methodologies for de-
signing modular ontologies should be elaborated to provide guidelines and best practices on the
basis of the module specification language and of the operators for manipulating modules. In par-
ticular, the availability of tools to support modularization impacts on the task of knowledge reuse,
also considered in work package 2. Moreover, it is believed that the ontology module formalism
provides a formal basis in many different tasks where “components of ontologies” have to be ma-
nipulated. Ontology customization (WP4) has already been mentioned as a possible use-case,
and generally relates to the definition of modules dependent on the context in which they will be
used. This relation between modules and context should be explored further (in collaboration with
WP3). In a more concrete way, ontology design patterns (and more specifically, content design
patterns) as defined in [PGD+08] can be considered as ontology modules: they are reusable parts,
components, of particular significance. Therefore, some of the operations described in [PGD+08]
to manipulate content design patterns (clone, composition, import, etc) could be implemented as
particular instances of operators defined in the module algebra.

D1.1.3 NeOn Formalisms for Modularization: Syntax, Semantics, Algebra Page 46 of 49

Bibliography

[BCH06a] J. Bao, D. Caragea, and V. Honavar. A distributed tableau algorithm for package-
based description logics. In the 2nd International Workshop On Context Representa-
tion And Reasoning (CRR 2006), co-located with ECAI 2006. 2006.

[BCH06b] J. Bao, D. Caragea, and V. Honavar. Modular ontologies - a formal investigation of
semantics and expressivity. In R. Mizoguchi, Z. Shi, and F. Giunchiglia (Eds.): Asian
Semantic Web Conference 2006, LNCS 4185, pages 616–631, 2006.

[BCH06c] J. Bao, D. Caragea, and V. Honavar. On the semantics of linking and importing in
modular ontologies. In I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273 (In Press),
pages 72–86. 2006.

[BCH06d] J. Bao, D. Caragea, and V. Honavar. Towards collaborative environments for ontology
construction and sharing. In International Symposium on Collaborative Technologies
and Systems (CTS 2006), pages 99–108. IEEE Press, 2006.

[BGvH+03a] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt. C-
OWL: Contextualizing ontologies. In Second International Semantic Web Conference
ISWC’03, volume 2870 of LNCS, pages 164–179. Springer, 2003.

[BGvH+03b] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt. C-
owl: Contextualizing ontologies. In International Semantic Web Conference, pages
164–179, 2003.

[BS02] A. Borgida and L. Serafini. Distributed description logics: Directed domain correspon-
dences in federated information sources. In CoopIS/DOA/ODBASE, pages 36–53,
2002.

[CG07] C. Caracciolo and A. Gangemi. D7.2.2 revised and enhanced fisheries ontologies.
NeOn Deliverable 7.2.2, NeOn Consortium, 2007.

[dDMT07] M. d’Aquin, P. Doran, E. Motta, and V. Tamma. Towards a parametric ontology mod-
ularization framework based on graph transformation. In Second International Work-
shop on Modular Ontologies (WoMO’2007), 2007.

[DKG+07] M. Dzbor, A. Kubias, L. Gridinoc, A. Lopez-Cima, and C. Buil Aranda. D4.4.1 : The
role of access rights in ontology customization. Neon deliverable, NeOn Consortium,
2007.

[dSM06] M. d’Aquin, M. Sabou, and E. Motta. Modularization: a key for the dynamic selection
of relevant knowledge components. In Workshop on Modular Ontologies, 2006.

2006–2008 c© Copyright lies with the respective authors and their institutions.

BIBLIOGRAPHY 47

[dSSS07] M. d’Aquin, A. Schlicht, H. Stuckenschmidt, and M. Sabou. Ontology modularization
for knowledge selection: Experiments and evaluations. In Roland Wagner, Norman
Revell, and Günther Pernul, editors, Database and Expert Systems Applications, 18th
International Conference, DEXA 2007, Regensburg, Germany, September 3-7, 2007,
Proceedings, volume 4653 of Lecture Notes in Computer Science, pages 874–883.
Springer, 2007.

[DTI07] P. Doran, V. Tamma, and L. Iannone. Ontology module extraction for ontology reuse:
An ontology engineering perspective. In Proceedings of the 2007 ACM CIKM Inter-
national Conference on Information and Knowledge Management, 2007.

[EdSZ07] J. Euzenat, M. d’Aquin, M. Sabou, and A. Zimmermann. D3.3.1: Matching ontologies
for context. NeOn Deliverable 3.3.1, NeOn Consortium, 2007.

[GHKS07] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. A logical framework for
modularity of ontologies. In Proc. of 20th International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 298–303, 2007.

[GK07] B. Cuenca Grau and O. Kutz. Modular ontology languages revisited. In Workshop on
Semantic Web for Collaborative Knowledge Acquisition (SWeCKa’2007, 2007.

[GPBH+07] J. M. Gòmez-Pérez, C. Buil, G. Herrero, T. Pariente, A. Baena, J. Candini, and J. C.
Dalm. D8.3.1 ontologies for the pharmaceutical case studies. NeOn Deliverable 8.3.1,
NeOn Consortium, 2007.

[GPS04] B. Cuenca Grau, B. Parsia, and E. Sirin. Working with multiple ontologies on the
semantic web. In International Semantic Web Conference, pages 620–634, 2004.

[GPSK05] B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Automatic partitioning of owl
ontologies using -connections. In Description Logics, 2005.

[GST07] C. Ghidini, L. Serafini, and S. Tessaris. On relating heterogeneous elements from
different ontologies. In Boicho N. Kokinov, Daniel C. Richardson, Thomas Roth-
Berghofer, and Laure Vieu, editors, Modeling and Using Context, 6th International
and Interdisciplinary Conference, CONTEXT 2007, Roskilde, Denmark, August 20-
24, 2007, Proceedings, volume 4635 of Lecture Notes in Computer Science, pages
234–247. Springer, 2007.

[HBP+07] P. Haase, S. Brockmans, R. Palma, J. Euzenat, and M. d’Aquin. D1.1.2 updated
version of the networked ontologymodel. NeOn Deliverable 1.1.2, NeOn Consortium,
2007.

[Hom07] M. Homola. Distributed Description Logics Revisited. In Proc. of the 20th International
Workshop on Description Logics DL’07. Bolzano University Press, 2007.

[HSH+05a] J. Hartmann, Y. Sure, P. Haase, R. Palma, and M. C. SuÂůrez-Figueroa. OMV – ontol-
ogy metadata vocabulary. In Chris Welty, editor, ISWC 2005 Workshop on Ontology
Patterns for the Semantic Web, NOV 2005.

[HSH+05b] J. Hartmann, Y. Sure, P. Haase, R. Palma, and M.-C. SuÃąrez-Figueroa. Omv – on-
tology metadata vocabulary. In Chris Welty, editor, ISWC 2005 - In Ontology Patterns
for the Semantic Web, NOV 2005.

BIBLIOGRAPHY 48

[KFWA06] S. Kaushik, C. Farkas, D. Wijesekera, and P. Ammann. An algebra for composing
ontologies. In Formal Ontology in Information Systems (FOIS), 2006.

[KLWZ03] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of description
logics. In Description Logics Workshop, CEUR-WS Vol 81, 2003.

[MBHR04] S. Melnik, P. A. Bernstein, A.Y. Halevy, and E. Rahm. A semantics for model man-
agement operators. Microsoft technical report, June 2004.

[MMAU03] B. MacCartney, S. McIlraith, E. Amir, and T.E. Uribe. Practical Partition-Based The-
orem Proving for Large Knowledge Bases. In Proc. of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2003.

[MRB03] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A programming platform for generic
model management. In Proc. SIGMOD, pages 193–204, 2003.

[NM04] N.F. Noy and M.A. Musen. Specifying Ontology Views by Traversal. In Proc. of the
International Semantic Web Conference (ISWC), 2004.

[Par72] D.L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12), December 1972.

[PGD+08] V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Suárez-Figueroa,
E. Montiel-Ponsoda, and M. Poveda. D2.5.1: A library of ontology design patterns:
reusable solutions for collaborative design of networked ontologies. NeOn Deliverable
2.5.1, NeOn Consortium, 2008.

[PSZ06] J.Z. Pan, L. Serafini, and Y. Zhao. Semantic import: An approach for partial ontology
reuse. In Workshop on Modular Ontologies, 2006.

[SCCJ07] M. Iglesias Sucasas, C. Baldassarre C. Caracciolo, and Y. Jaques. D7.1.2 revised
specifications of user requirements for the fisheries case study. NeOn Deliverable
7.1.2, NeOn Consortium, 2007.

[SK04] Heiner Stuckenschmidt and Michel C. A. Klein. Structure-based partitioning of large
concept hierarchies. In International Semantic Web Conference, pages 289–303,
2004.

[SR06] J. Seidenberg and A. Rector. Web ontology segmentation: Analysis, classification
and use. In Proceedings of the World Wide Web Conference (WWW), Edinburgh,
June 2006.

[SSW05a] L. Serafini, H. Stuckenschmidt, and H. Wache. A formal investigation of mapping
languages for terminological knowledge. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence - IJCAIÂě05, Edinburgh, UK, August 2005.

[SSW05b] H. Stuckenschmidt, L. Serafini, and H. Wache. Reasoning about ontology mappings.
Technical report, Department for Mathematics and Computer Science, University of
Mannheim ; TR-2005-011, 2005.

[ST05] L. Serafini and A. Tamilin. Drago: Distributed reasoning architecture for the semantic
web. In European Semantic Web Conference - ESWC, pages 361–376, 2005.

BIBLIOGRAPHY 49

[Stu06a] H. Stuckenschmidt. Toward Multi-Viewpoint Reasoning with OWL Ontologies. In Proc.
of the European Semantic Web Conference (ESWC), 2006.

[Stu06b] H. Stuckenschmidt. Towards multi-viewpoint reasoning with OWL ontologies. In Eu-
ropean Semantic Web Conference, 2006.

[VOM02] R. Volz, D. Oberle, and A. Maedche. Towards a Modularized Semantic Web. In
Semantic Web Workshop, Hawaii, 2002.

[Wie94] G. Wiederhold. An algebra for ontology composition. In Monterey Workshop on
Formal Methods, 1994.

[ZE06] A. Zimmermann and J. Euzenat. Three Semantics for Distributed Systems and their
Relations with Alignment Composition. In Proc. of 5th International Semantic Web
Conference (ISWC’06), volume 4273 of LNCS, pages 16–29. Springer, 2006.

[Zim07] A. Zimmermann. Integrated Distributed Description Logics. In Proc. of the 20th Inter-
national Workshop on Description Logics DL’07. Bolzano University Press, 2007.

