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Executive Summary

Ontology modularization has attracted more and more attention in the recent years, as there is a clear need
for such approaches to facilitate the management, evolution and distribution of large, complex ontologies.
However, while there have been many papers in the literature investigating different aspects of modulariza-
tion, there is still a need for a complete environment allowing ontology engineers to create, edit, manipulate,
extract, decompose and combine ontology modules.

The work presented here follows the formalism described in [dHR+08], which provided the foundation of
the NeOn support for ontology modularization. We describe the implementation and validation of a set of
tools integrated within the NeOn Toolkit for ontology engineers to tackle the various tasks related to ontology
modules, modular ontologies and ontology modularization in a controlled and interactive way.

We can distinguish two main activities related to ontology modularization: specifying modules at design
time or modularizing existing non-modular ontologies. A first set of plugins consider the first aspect. It is
possible within the NeOn Toolkit to specify ontology modules, editing interfaces and imported modules. In
addition, this plugin provides the API at the basis of all the other plugins for modularization support in the
NeOn Toolkit. An extension of the OntoModel plugin is also provided that allows ontology engineers to create
multiple, modular diagrams for ontologies. Finally, another plugin provides various, simple operators (union,
intersection, difference) to combine modules with each other.

Since many ontologies are built without modularity in mind, there is a need for tools to support the creation
of modules from existing ontologies. For this purpose, we developed an ontology partitioning technique inte-
grated in the NeOn Toolkit. This plugin decomposes an ontology into a set of modules, which are organized
according to their dependency. In other applications, it is preferable to extract one focused and specified
module rather than decomposing the ontology. We propose an interactive plugin for creating and refining
modules extracted from ontologies, according to user-specified criteria. We also implement a formal tech-
nique to extract logically sound and complete modules for particular entities. Our experiments have shown
that this technique can be used efficiently to improve the performance of reasoning tasks such as justification.

In a nutshell, we provide a complete set of tools integrated in the ontology engineering environment of the
NeOn Toolkit and that can work together in supporting the complex tasks related to ontology modularization.
We also started to investigate aspects beyond ontology engineering tools, like reasoning approaches for
modular ontologies and methodological guidelines for modularizing ontologies.
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Chapter 1

Introduction

One of the major problems that hamper ontology engineering, maintenance and reuse in the current ap-
proaches is that ontologies are not designed in a way that facilitates these tasks. To some extent, the
problem faced by ontology engineers can be seen as similar to the one faced by software engineers. In
both cases, facilitating the management of a system (software or ontology) requires to identify components,
modules, that can decoupled from this system, to be exploitable in a different context and integrated with
different components. In other terms, building an ontology (and a software) as a combination of indepen-
dent, reusable modules reduces the effort required for its management, in particular in a collaborative and
distributed environment.

This idea has lead to the general notion of modular software in software engineering and is currently gain-
ing more and more attention within the ontology community, as the ontology modularization problem. First
approaches have been devised, promoting the development of local ontologies, linked together by map-
pings [BGvH+03, KLWZ03]. Another direction of research in the field of ontology modularization concerns
the extraction of significant modules from existing ontologies (see e.g. [dSSS07] for an overview).

From these research studies, it can already be seen that there are several tasks one may consider when
having to cope with ontology modularization. An obvious distinction concerns, on the one hand, approaches
that tackle the design of modular ontologies (modularization a priori) and, on the other hand, approaches that
intend to introduce modularity in ontologies that have not been designed in a modular way (modularization a
posteriori).

In [dHR+08] we defined the formal foundation of the NeOn support for modularization with the aim of sup-
porting both these views. A basic module definition language was defined, based on the notions of mapping,
partial import and encapsulation, and a set of operators were identified as potentially useful either to combine
ontology modules or to create modules from existing ontologies.

In the following, we present the implementation of a set of plugins for the NeOn Toolkit to support the activities
related to ontology modularization. In a first part, we present developed tools to support a priori modulariza-
tion, including specifying ontology modules (Chapter 2) and combining modules with each other (Chapter 3).
In a second part, tool support for a posteriori modularization is described, including plugins for partitioning
existing ontologies into a set of modules (Chapter 4) and for extracting modules from ontologies according to
some user-defined criteria (Chapter 5). Finally, we briefly summarize current activities to support other tasks
related to ontology modularization within NeOn, which will be treated in other deliverables (Chapter 6).

However, before entering into the details of the implementation of each individual tool, the next section
provides an overview of this set of plugins and of their organization/interaction.

1.1 Overview of the NeOn Toolkit Support for Ontology Modularization

Figure 1.1 provides a general overview of the different plugins and software components involved in the NeOn
toolkit support for ontology modularization. The central component in this diagram is the NeOn Module
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Figure 1.1: Overview of the modularization plugins for the NeOn Toolkit.
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API, which provides the basic structures for creating a manipulating modules programmatically within the
environment of the NeOn Toolkit. This API extends the existing NeOn Toolkit datamodel for ontologies
and is associated with the features included in the NeOn Toolkit for specifying modules. As part of these
particular set of features, an extension of the OntoModel plugin is also provided to describe multiple diagram
for ontologies, allowing a simple definition a modular design for ontologies.

All the other plugins related to modularization are based on the module API. These include the plugin for
specifying ontology modules, which allows the user to describe a module in terms of imports and interfaces,
composing ontology modules, which allows the user to put together ontology modules to create new ontolo-
gies, the plugin for partitioning ontologies, which allows the user to decompose an ontology into modules,
and the plugin for extracting modules from ontologies, which allows the user to extract from an ontology a
part that satisfies certain given criteria.

Finally, as mentioned above, some aspects related to the support for ontology modularization will be fully
treated in future deliverables. This includes the integration of a reasoner for ontology module based on the
semantics of IDDL, as described in [dHR+08], and the definition of methodological guidelines for various
aspects of ontology modularization, starting from the task of modularizing existing ontologies.
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Part I

Designing Modular Ontologies
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Chapter 2

Specifying Ontology Modules

In this chapter we describe how the specification of modules according to the NeOn metamodel for modular
ontologies is supported within the NeOn infrastructure. At the basis, we have realized a core module plugin
that provides a module API, which is used by other plugins providing modularization support for the program-
matic specification and manipulation of modules. Further, we provide GUI-level plugins for the specification
of modules by an ontology engineer within the editor.

2.1 The NeOn Metamodel for Modular Ontologies

In this section we briefly recapitulate the basics of NeOn model for modular ontologies as defined in Deliver-
able D1.1.3 [dHR+08].

2.1.1 Abstract Definition and Notation

We start by defining sets of identifiers being used for unambiguously referring to ontology modules and
mappings that might be distributed over the Web. Obviously, in practice, URIs will be used for this purpose.
So we let

• IdModules be a set of MODULE IDENTIFIERS and

• IdMappings be a set of MAPPING IDENTIFIERS, where a mapping is a set of relations (correspondences)
between entities of two different ontologies.

Next we introduce generic sets describing the used ontology language. They will be instantiated depending
on the concrete ontology language formalism used (e.g., OWL). Hence, let:

• Nam be a set of NAMED ELEMENTS.
In the case of OWL, Nam will be thought to contain all class names, property names and individual
names.

• Elem be a the set of ONTOLOGY ELEMENTS.
In the OWL case Elem would contain e.g. all complex class descriptions. Clearly, Elem will depend
on Nam (or roughly speaking: Nam delivers the “building blocks” for Elem).

• We use L : 2Nam → 2Elem to denote the function assigning to each set P of named elements the set
of ontology elements which can be generated out of P by the language constructs1,

• For a given set O of ontology axioms, let Sig(O) denote the set of named elements occurring in O, so
it represents those elements the axioms from O deal with.

1In most cases – and in particular for OWL – L(P ) will be infinite, even if P is finite.
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Having stipulated those basic sets in order to describe the general setting, we are now ready to state the
notion of an ontology module on this abstract level.

Definition 1 An ONTOLOGY MODULE OM is a tuple 〈id , Imp, I,M, O, E〉 where

• id ∈ IdModules is the identifier of OM

• Imp ⊆ IdModules is a set of identifiers of imported ontology modules (referencing those other modules
whose content has to be (partially) incorporated into the module),

• I is set {Iid}id∈Imp of IMPORT INTERFACES, with Iid ⊆ Nam (characterizing which named elements
from the imported ontology modules will be “visible” inside OM),

• M ⊆ IdMappings is a set of identifiers of imported mappings (referencing – via mapping identifiers –
those mappings between ontology modules, which are to be taken into account in OM),

• O is a set of ONTOLOGY AXIOMS (hereby constituting the actual content of the ontology),

• E ⊆ Sig(O)∪
⋃

id∈Imp Iid is called EXPORT INTERFACE (telling which named entities from the ontology
module are “published”, i.e., can be imported by other ontology modules).

Note that, in order to simplify the notation, we will not specify explicitly an identifier for the module:
a module OMi will be considered as implicitly having “OMi” as identifier and will so be written:
OMi = 〈Impi, Ii,Mi, Oi, Ei〉.

In a further step we formally define the term mapping (which is supposed to be a set of directed links,
correspondences, between two ontology modules establishing semantic relations between their entities).

Definition 2 A MAPPING M is a tuple 〈s, t, C〉 with

• s, t ∈ IdModules, with s being the identifier of the source ontology module and t being the identifier of
the target ontology module,

• C is a set of CORRESPONDENCES of the form e1  e2 with e1, e2 ∈ Elem and ∈ R for a fixed set R
of CORRESPONDENCE TYPES2

2.1.2 Metamodel

We propose a generic metamodel for modular ontologies according to the design considerations discussed
above. The metamodel is a consistent extension of the metamodels for OWL DL ontologies and map-
pings [HBP+07].

Figure 2.1 shows elements of the metamodel for modular ontologies. The central class in the metamodel
is the class OntologyModule. A module is modeled as a specialization of the class Ontology. The
intuition behind this modeling decision is that every module is also considered an ontology, enriched with
additional features. In other words, a module can also be seen as a role that a particular ontology plays.
In addition, an ontology provides (at most) one ExportInterface and a set of ImportInterface.
The interfaces define the elements that are exposed by the imported module and reused by the importing
module. The elements that can be reused by modules are MappableElements (defined in the mapping
metamodel). A mappable elements is either an OWLEntity or a Query over an ontology, meaning that
entities can be exposed in interfaces either directly or as the results of queries.

The export interface, modeled via the exports association, exposes the set of OntologyElements that
are intended to be reused by other modules.

2In accordance with the NeOn metamodel, this set will be fixed to R = {v,w,≡,⊥, 6v, 6w, 6≡, 6 ⊥}
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Figure 2.1: Metamodel extensions for ontology modules.

The reuse of elements from one module by another module is represented via the ImportInterface.
The association imports relates the importing module with the definition of the imports interface.
The association importedModule refers to the module that is being imported, while the association
importedElement refers to the element in the imported ontology being reused. In this sense, the
ImportInterface can be seen to realize the ternary relationship between the importing ontology, the
imported ontology, and the elements to be reused.

Additionally, a Module also provides an imports relationship with the Mapping class, which is used to
relate different ontology modules via ontology mappings.

2.1.3 Concrete Representation with OMV

In order for the modularization formalism to be usable, it requires at least one concrete syntax that implements
the elements of the abstract syntax and of the metamodel at a technological level. Ideally, this syntax should
integrate with OWL in a non-intrusive and backward compatible way, to keep the definition of modules as
flexible as possible. In particular it is important that standard tools for OWL that would not support our
modularization mechanism could ignore the definition of modules and continue to work in the same way,
even if they would obviously not take benefit from the features provided by modularization.

We made the choice to implement this concrete syntax as an extension of OMV [HSH+05]. OMV is a ontology
metadata vocabulary, and it could appear strange to define modules as ontology metadata, but according
the above definitions, an ontology module is nothing but an ontology associated with additional information
regarding interfaces and mappings. Of course, these “metadata” would have an influence on the semantics
of the module, so this choice is still questionable. However, OMV already includes definitions for ontologies
and mappings, and we would anyway have to define a metadata descriptor for modules that would include
the same information.

Figure 2.2 describes the OMV extension for modularization (blue classes are classes already in OMV or in
the mapping extension, and the red ones are new). It is built in accordance with the metamodel.
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Figure 2.2: Overview of the OMV extension for Ontology Modules.

2.2 The NeOn plugin Support for Specifying Modules

As the core plugin, we have realized an API for the specification and manipulation of modules. This API is
generated directly from the metamodel for modular ontologies. Essentially, every class of the metamodel
is represented as a Java class in the API. The ontology class (from which the module class inherits), is
connected via the delegator pattern with the ontology class of the datamodel API of the core NeOn Toolkit.

In the following, we exemplarily show the interface for the module class in the API:

public interface OntologyModule extends Ontology {

public void addImportIterface(ImportInterface importInterface);
public void removeImportIterface(ImportInterface importInterface);
public Set<ImportInterface> getImportIterfaces();

public void setExportInterface(ExportInterface exportInterface);
public ExportInterface getExportInterface();

public void addMapping(Mapping mapping);
public void removeMapping(Mapping mapping);
public Set<Mapping> getMappings();

public String getModuleUri();
public void setModuleUri(String uri);
public void saveOntologyModule(String modulePath);

}

We see that the OntologyModule class is realized as an extension of the Ontology class (i.e., as
specified in the metamodel, it inherits from the Ontology class). Further, we see the getter/setter methods
to for the attributes and relationships of the OntologyModule class.

The plugin also provides a default implementation. In this implementation, the module information is persisted
using the OMV-based syntax described in Section 2.1.3.

The API plugin is intended to be used by other plugins providing modularization support. For the specification
of plugins within the editor of the NeOn Toolkit, we have developed a GUI plugin extending the editor with
module support. For the specification of the import relationship between modules, we rely on the existing
mechanisms in the NeOn Toolkit to import an ontology into another (c.f. Imports Section in Figure 2.3). As
explained before, the intuition is to reuse the existing modeling constructs on the ontology level, by treating a
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module as (specialized) ontology.

For specifying the interfaces, an extension to the entity properties page named Module Interface (c.f. Figure
2.4 has been realized. In this page it is now possible, to define the import and export interfaces: For the
module itself, it is possible to specify the signature by selecting the respective classes and properties to be
exported. Similarly, for all modules it is possible to select the subset of classes and properties that should be
imported by the module.

While this module specification plugin aims at the specification of the module metadata, we have also ex-
tended existing plugins to support modular ontology design on the content side.. As an example we here
mention the OntoModel plugin, a plugin for the visual (UML-based) modeling of ontologies. The basic idea
is that in OntoModel, the ontology can be specified in UML-like diagrams. A drawback of the existing imple-
mentation was that there was a one-to-one correspondence between ontology and diagram, i.e. the entire
ontology always had to be shown at once in the diagram. Obviously, this approach did not scale for modelling
large ontologies. This, support for modularization was needed. We extended OntoModel in two ways:

• We introduced multiple-diagram modeling, i.e. a one-to-many relationship between model and dia-
gram. Each diagram can show a subset (a module) of the overall model. (c.f. Figure 2.5

• We introduced module extraction: Starting from a diagram, the user can select a subset of the ontology,
based on which a new module should be extracted. Extraction techniques (c.f. Chapter 5) have been
implemented to be able to identify and select the parts of the ontology that are relevant.

More details about the extensions of OntoModel to support modularization can be found in [Nab08] and on
the plugin website at http://www.neon-toolkit.org/wiki/index.php/OntoModel.

2.3 Example Usage: Specifying the Fishery Ontologies Modules

We will now describe the usage of the plugins using a small example with ontologies from the FAO case
study.

In this example, we start out with two initially isolated ontologies that are to be related in a modular way. The
ontologies are the Gear ontology and the Vessels ontology, as described in Deliverable D7.2.2 [CG07]. The
idea is to import the gears ontology is imported as a module into the vessels ontology, specifying the relevant
interfaces.

Figure 2.3 shows how the import relationship between the two ontologies is specified: In the Imports section
we see that the vessels module imports the gears module.

In Figure 2.4 we see how the interfaces are specified in the extension to the entity properties page named
Module Interface. In the upper part we see the definition of the exports interface, where the elements
hasVessClassGRT, hasVessClassPower, hasName, hasID are selected to be exported. Sim-
ilarly, we see how the all imported modules it is possible to select the subset of classes and properties that
should be imported by the module. In the Figure 2.4, the engineer has specified that the properties hasID,
hasName, hasDescription should be imported from the gears modules.

The corresponding serialization of the module based on OMV looks like this:

<rdf:RDF
xml:base="http://modules.ontoware.org/newModule1226068707828.owl"
xmlns:a="http://modules.ontoware.org/2008/10/ontology#"
xmlns:b="http://omv.ontoware.org/2005/05/ontology#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about=""/>
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Figure 2.3: Specifying the imports relationship between modules

<a:OntologyModule rdf:ID="ex_module">
<a:contains rdf:resource="&c;vessels_v1.0.owl"/>
<a:exports rdf:resource="#exportInterfaceIndi"/>
<a:imports rdf:resource="#importInterfaceIndi0"/>

</a:OntologyModule>

<a:ExportInterface rdf:ID="exportInterfaceIndi">
<a:hasElement rdf:resource="&d;hasID"/>
<a:hasElement rdf:resource="&d;hasName"/>
<a:hasElement rdf:resource="&d;hasVessClassGRT"/>
<a:hasElement rdf:resource="&d;hasVessClassPower"/>

</a:ExportInterface>

<a:ImportInterface rdf:ID="importInterfaceIndi0">
<a:hasElement rdf:resource="&e;hasDescEN"/>
<a:hasElement rdf:resource="&e;hasID"/>
<a:hasElement rdf:resource="&e;hasName"/>
<a:hasImportedModule rdf:resource="&c;gears_v1.0.owl"/>

</a:ImportInterface>
...
</rdf:RDF>
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Figure 2.4: Specifying the interface

Figure 2.5 shows (one aspect of) the modularization support within OntoModel. We use a large ontology
(species ontology) with a thousands of individuals. This ontology is way too large to be visualized within a
single diagram. In the figure we see a diagram that only shows a module (fragment) of the original ontology.
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Figure 2.5: Diagrams for Ontology Modules in Ontomodel
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Chapter 3

Combining Modules

In this chapter, we describe the support for the combination of modules. The work builds on a module
algebra with a set of ontology combination operators. This algebra was introduced in [dHR+08] and is briefly
recapitulated in the following section. Subsequently, we describe how the algebra has been realized as a
plugin to the NeOn Toolkit.

3.1 Ontology Combination Operators

As modular ontologies are made of the combination of different ontology modules, operators are required to
support the ontology designer in composing modules, creating them, and more generally, manipulating them.
There have been a few studies on possible operators in an ontology algebra and, since an ontology module
is essentially an ontology, these can be a source of inspiration for an ontology module algebra.

3.1.1 Existing Ontology Algebras

In [Wie94], Wiederhold defines a very simple ontology algebra, with the main purpose of facilitating
ontology-based software composition. He defines a set of operators applying set-related operations on the
entities described in the input ontologies, and relying on equality mappings (=) between these entities. More
precisely, the three following operators are defined.

Intersection(O1, O2) → O create an ontology O containing the common (mapped)
entities in O1 and O2.

Union(O1, O2) → O create an ontology O containing the entities
of O1 and O2, and merging the common ones.

Difference(O1, O2) → O create an ontology O containing only the entities
of O1 that are not mapped to entities of O2

In the same line of ideas, but in a more formalized and sophisticated way, [MBHR04] describes a set of oper-
ators for model management, as defined in the RONDO platform [MRB03]. The goal of model management
is to facilitate and automatize the development of metadata-intensive applications by relying on the abstract
and generic notion of model of the data, as well as on the idea of mappings between these models. An
essential part of a platform for model management is a set of operators to manipulate and combine these
models and mappings. [MBHR04] focuses on formalizing a core set of operators: Match, Compose, Merge,
Extract, Diff and Confluence. Match is particular in this set. It takes 2 models as an input and returns a
mapping between these models. It inherently does not have a formal semantics as it depends on the tech-
nique used for matching, as well as on the concrete formalism used to describe the models and mappings.
Merge intuitively corresponds to the Union operator in [Wie94]: it takes two models and a mapping and
creates a new model that contains the information from both input models, relying on the input mapping. It



3.1. ONTOLOGY COMBINATION OPERATORS 21

also creates two mappings from the created model to the two original ones. Extract creates the sub-model
of a model that is involved in a mapping and Diff the sub-model that is not involved in a mapping. Finally,
compose and confluence are mapping manipulation operators creating mappings by merging or composing
other mappings.

[KFWA06] defines operators for combining ontologies created by different members of a community and
written in RDF. This paper first provides a formalization of RDF to describe set-related operators such as
intersection, union and difference. It also adds other kind of operators, such as the quotient of two ontologies
O1 and O2 (collapsing O2 into one entity and pointing all the properties of O1 to entities of O2 to this particular
entity) and the product of two ontologies (inversely, extending the properties of from O1 to O2 to all the entities
of O2). It is worth mentioning that such operators can be related to the ones of relational algebras, used in
relational database systems.

Note finally that the OWLTools1 that are part of the KAON2 framework include operators such as diff, merge
and filter working at the level of ontology axioms. For example, merge creates an ontology as the union of
the axioms contained in the two input ontologies.

3.1.2 Supported Operators

Inspired by the work described above and relying on the metamodel for ontology modules in NeOn, we
defined the three following module combination operators to be implemented in the plugin.

Union The Union operator creates a new module by merging the content of two other ones.

Semantics for any axiom α, Union(M1,M2) |= α if M1 |= α ∨M2 |= α

Properties commutative, associative, idempotent.

Definition A simple way to comply with the semantics of the union operator is that the created module
includes all the axioms in the two combined modules.

Difference The difference of two modules corresponds to the part of the first module that is not in the second
one.

Semantics for any axiom α, Difference(M1,M2) |= α iff M1 |= α ∧M2 6|= α

Properties not commutative, not associative, Difference(M,M) = empty_module

Definition This operator can be approximated by applying set differences to the axioms of the combined
modules.

Intersection Intersection extracts the common part of two modules.

Semantics for any axiom α, Intersection(M1,M2) |= α iff M1 |= α ∧M2 |= α

Properties commutative, not associative, idempotent.

Definition If both Union and Difference are defined, intersection can be easily computed in the following
way:

Intersection(OM1,OM2) = Difference(Union(OM1,OM2),
Union(Difference(OM1,OM2), Difference(OM2,OM1)))

Otherwise, approximations can be achieved using the set-intersection of the axioms of the modules.

1http://owltools.ontoware.org/
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Figure 3.1: Combining modules.

3.2 The NeOn Toolkit Support for Combining Modules

The module algebra is implemented in a dedicated plugin, which is realized as a new NeOn Toolkit view. As
shown in Figure 3.1, in this view the user selects the two ontologies that serve as input for the operators. In
the field between the two ontologies the user selects the operator to be applied. In addition to the combina-
tion operators mentioned above, the plugin also supports alignment as an operator, which allows to relate
modules via mappings. Depending on the operator chosen, the result will be either a new module (for union,
diff, intersection), or an alignment (for align).

Finally, the user can specify whether the application of the operators should be sensitive to differences in the
namespace. If not, the operators only consider local names. This is for example relevant for the difference
operator applied to two versions of the same ontology – as often the namespace changes from one version
to another (and thus all elements in the ontology), a difference based on the fully qualified names would not
be very meaningful.

The result of applying the operators can be saved to an ontology project.

3.3 Example Usage

Figure 3.1 shows the application of the operators to ontologies from the FAO case study. As input, the
vessels module and the gears module are selected, the modules are combined via the union operator to a
single module. Please note the difference with the previous example in Section 2.3, where a combination
was specified via an imports relationship between the two modules. In contrast, the union operator generates
a single module.
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Part II

Creating Modules from Non-Nodular
Ontologies

2006–2008 c© Copyright lies with the respective authors and their institutions.
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Chapter 4

Modularizing Ontologies

Modularizing ontologies refers to the process of manually, automatically or semi-automatically creating a set
of modules from an existing, non-modular and potentially large ontology. It is often referred to as ontology
partitioning1, since they create a set of modules, each containing a sub-set of the axioms and entities of the
original ontology, and such that the union of these modules corresponds to the original ontology.

In [dHR+08], we proposed the definition of a decompose operator for modules as follows:

Description This operator divides an existing module into parts that should correspond to significant com-
ponents.

Signature Decompose : Module → 2Module

Semantics for any axiom α, M |= α iff Union(Decompose(M)) |= α

Properties in some definitions, the decomposition result in a partition, meaning that
Intersection(Decomposition(M)) = empty_module, but this is not always the case.

Example Decomposing an existing ontology into modules facilitates the maintenance of the ontology and
helps in using it, making possible its exploration “by pieces” and the distribution of reasoning mecha-
nisms.

In this chapter, after a quick reminder about existing techniques for automatic partitioning of ontologies, we
propose a novel algorithm that has the particularity of taking into account the dependency between modules.
It results in modularization with dependency structures having good properties from a knowledge engineering
perspective. We then detail the implementation of this operator as a NeOn Toolkit plugin, before presenting
the experiments realized for the validation of the approach.

4.1 Ontology Partitioning Techniques

The approach of [MMAU03] aims at improving the efficiency of inference algorithms by localizing reasoning.
For this purpose, this technique minimizes the shared language (i.e. the intersection of the signatures) of
pairs of modules. A message passing algorithm for reasoning over the distributed ontology is proposed for
implementing resolution-based inference in the separate modules. Completeness and correctness of some
resolution strategies is preserved and others trade completeness for efficiency.

The approach of [GPSK05] partitions an ontology into a set of modules connected by ε-Connections. This
approach aims at preserving the completeness of local reasoning within all created modules. This require-
ment is supposed to make the approach suitable for supporting selective use and reuse since every module
can be exploited independently of the others.

1Note that some approaches being labeled as partitioning methods do not actually create partitions, as the resulting modules
may overlap.
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A tool that produces sparsely connected modules of reduced size was presented in [SK04]. The goal of
this approach is to support maintenance and use of very large ontologies by providing the possibility to
individually inspect smaller parts of the ontology. The algorithm operates with a number of parameters that
can be used to tune the result to the requirements of a given application.

4.2 A Dependency-Based Ontology Partitioning Algorithm

It is very complicated to evaluate partitioning techniques. Most of the techniques result in a bag of modules,
that would need to be inspected by experts of the domain and ontology engineers to check if the result match
what was expected. In realistic cases, defining what to expect and checking it is not even feasible. Indeed,
there is only a handful of measures one can consider to characterize a bag of modules, being themselves
bags of axioms [dSSS07]. Moreover, not considering the properties of the structure of the modularization–
i.e., how modules relate to and depend on each other–hampers the usability of the modularization, in par-
ticular for the purpose of facilitating the maintenance of an ontology. For this reason, we introduce a new
algorithm for partitioning ontologies which is primary based on enforcing good properties on the dependency
structure of the resulting modularization.

4.2.1 Definition of the Approach

Our approach to ontology partitioning is based on basic requirements concerning the resulting modulariza-
tion and its structure. We consider that the result of the partitioning process should not only be a bag of
modules, but should also provide the relations between them in terms of dependency. In addition, some
good properties for this structure should be enforced, in order to facilitate the manipulation and maintenance
of the modularization.

As our approach is based on the dependency structure of modules, we need to define this relation of depen-
dency. We consider a module m1 to be dependent on a module m2 if there is at least one entity in m1 which
definition or description depends on at least one entity in m2. The definition or the description of an entity A
depends on an entity B whenever B participates to the axioms defining or describing A, e.g., in the following
axioms

A ≡ B

A v B

A ≡ ∃p.B

A v ∀p.B

etc.

A is dependent on B and p.

From this definition, we can see that if a module m1 depends on a module m2, it means that m1 should
import m2. Therefore, using this notion of dependency, our approach provides a complete modular structure,
with for each resulting module, information about the necessary imports and interfaces. The result is indeed
a graph of modules based on this dependency relation.

Another particularity of our approach is that, not only we want to provide a dependency structure for the
resulting set of modules, but we also want this structure to have good properties in order to be efficient in
facilitating further engineering of the obtained modular ontology. In other terms, as shown in Figure 4.1, we
do not want this structure to be any arbitrary (directed) graph, but to respect 2 major rules:

Rule 1 (no cycle): There should not be any cycle in the dependency graph of the resulting modularization.
This means that, if we note m1 → m2 the dependency relation between two modules m1 and m2, and
m1

∗−→ m2 the transitive closure of the dependency relation, there should not exist any module m1
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Figure 4.1: Enforcing good properties for the dependency structure of modules.

such that m1
∗−→ m1. The rational for this rule is that we are trying to reproduce the natural situation

where modules would be reused. Creating bidirectional interdependencies between reused modules
is a bad practice as it introduces additional difficulties in case of an update of one of the modules or
when distributing modules [?].

Rule 2 (no transitive dependency): If a module reuse another one, it should not, directly or indirectly reuse
a module on which the reused one is dependent. More formaly, there should not be any modules
m1, m2 and m3 such that m1 → m2, m2

∗−→ m3 and m1 → m3. Indeed, when this situation
arises, it means that the organization of modules into layers have not been enforced, so that a module
is reusing other module at different levels of the same branch of the dependency graph. Besides
producing unnecessary redundancies in the dependency structure, this could also cause difficulties for
the evolution and distribution of the module by creating "concurrent propagation paths" leading to the
same module.

In addition, in order to ensure not only that the structure of the modularization respects good properties, but
also that individual modules are easy to manage and to handle, we add two rules on the characteristics of
each module:

Rule 3 (size of the modules): A module should not be smaller than a given threshold. Indeed, Initial exper-
iments have shown that applying only the two rules above can result in very small modules. Too small
modules can be hard to manage, as it can result in having to consider too many different modules for
a given task (e.g., update) [dSSS07]. Note that, even if it could sometimes be useful, a rule based on
the maximum size of a module would not be applicable as it would contradict rules 1 or 2. In this case,
it would be recommended to use the extraction techniques described in the next chapter to reduce the
size of the modules considered too big.

Rule 4 (intra-connectedness): Entities within a module should be connected with each other. This is a
very simple and natural rule to follow. Indeed, there is no reason for entities that are completely
disconnected, directly or indirectly, to end-up in the same module.

4.2.2 Partitioning Algorithm

Having the above rules defined, our algorithm for partitioning ontologies is reasonably straightforward. It
basically consists in starting from an initial modularization with as many modules as entities in the ontology.
From this initial modularization, the algorithm iteratively enforces Rules 1 and 2, merging modules when
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necessary. At the end of this step a modularization that respects Rules 1, 2 and 4 is obtained. The last task
consists in merging modules that are too small according to the given threshold, ensuring that this merging
ends up in modules that respect Rule 4.

In the following algorithm:

• a module contains a set of entities, and all the axioms attached to these entities

• |m| with m a module, refers to the size of the module in number of entities (note that we consider an
ontology and an ontology module) to contain individuals, as well as classes and properties)

• merging two modules consists in creating a new module, containing the union of the entities of the
original modules and importing all the modules imported by them

• similarity between modules is computed by comparing the number of imported modules and the size
of the modules.

Algorithm: Dependency-based ontology partitioning

Input: Ontology O, Integer ts (size threshold)

Returns: Set of Ontology Modules (with import information)

1. Obtain the list le of entities of O

2. For each entity e in le

(a) create a new module m containing e

(b) find the entities e depends on and add the corresponding modules to the imported modules of m

(c) add m to the list of modules lm

3. For all the modules m in lm such that m
∗−→ m

(a) merge all the modules on the path from m to m into a module mm

(b) remove all the modules on the path from m to m from lm

(c) add mm to lm

4. For all the modules m1, m2 and m3 in lm such that m1 → m2, m2
∗−→ m3 and m1 → m3

(a) merge all the modules on the path from m2 to m3 into a module mm

(b) remove all the modules on the path from m2 to m3 from lm

(c) add mm to lm

5. For all the modules m in lm such that |m| < ts

(a) merge m with the module m2 that is the most similar with m amongst the set of modules imported
by m or importing m, into a module mm

(b) remove m and m2 from lm

(c) add mm to lm

return lm

The result of the algorithm is a list of modules, each containing a sub-set of the entities of the original ontology
(without overlap) and potentially importing other modules of the modularization. It can easily be shown that
this modularization respect Rules 1, 2 and 3. Rule 4 is enforced simply because, anytime in the algorithm
two modules are merged, there is a dependency relation between them. This dependency relation is derived
from relations between entities. Therefore, the modules resulting from the merging necessarily contains
entities that are related with each other.
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Figure 4.2: The ontology partitioning plugin for the NeOn Toolkit.

4.3 Implementation of the NeOn Toolkit Support for Modularizing Ontolo-
gies

The algorithm presented in the previous section has been implemented as a plugin for the NeOn Toolkit. It
relies on the Module API presented in Chapter 2, as it implements a modularization operator and produce
ontology modules represented in terms of this API.

Concretely, this plugin takes the form of a view within the environment of the NeOn Toolkit, which allows
the user to select the ontology to modularize, specify the threshold for the minimum size of the modules and
execute the algorithm (see figure 4.2). The result of the algorithm is them presented as a tree, with each node
corresponding to a created module (details of the module are shown when selecting the corresponding node).
The plugin allows the user to save and integrate to the current ontology project each module individually.

An interesting aspect of the implementation within the NeOn Toolkit is that it allows a very flexible and cus-
tomizable modularization process. Indeed, it is possible to re-run the algorithm with different parameters,
save only the modules that are relevant according to the ontology engineer, and use the module composition
plugin presented in Chapter 3 to manipulate and customize the modularization, until a satisfactory, well-suited
modularization is obtained.
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min_size nb modules time (ms) min entities max entitites graph

2 11 27,481 2 200 3 levels
3 10 27,623 3 204 3 levels
4 8 27,451 5 207 3 levels
5 8 27,469 5 207 3 levels
7 6 26,707 7 212 2 levels

10 5 27,164 17 219 2 levels
20 3 27,333 181 254 2 levels

Table 4.1: Applying the dependency based partitioning technique with varying min_size values. nb modules
corresponds to the number of modules in the resulting partition, time (ms) to the time taken for executing
the partitioning algorithm, min entities to the size of the smallest module, max entities to the size of the
biggest module, and graph to the structure of the resulting dependency graph (its depth).

4.4 Experiments on Applying the Technique

In order to evaluate the behavior of our technique for partitioning ontologies and of its implementation within
the NeOn Toolkit, we applied it on a set of real-life ontologies in order to measure the characteristics of the
tool and of the resulting modularizations.

Our first test intended to check the basic behavior of the algorithm, to verify that the four properties we
defined where all validated, and to assess some measures on the results, as well as the influence of the
parameter (min_size: the minimum size of a module). We applied the tool on a single ontology2, chosen
for its reasonably large size (439 entities, 2044 axioms) and complexity, with varying min_size values. The
results are summarized in table 4.1.

Testing Rules 1, 2, 3 and 4. On each of the resulting modularization, we checked wether or not the rules
defined above were properly enforced by the algorithm. In general, it was fairly straightforward to verify
that Rules 1 and 2 were always respected, the resulting graph being always a simple tree. However, we
discovered a small issue concerning Rules 3 and 4: in this and some other ontologies, there is a small
number of entities that are not connected to any other. For each of these entities, the original algorithm
generated a module (of size 1), completely disconnected from the others. In order to simplify the results, we
gathered these singleton modules into one unique module. This module obviously does not enforce Rule 4 (it
may contain several entities disconnected from each other) and might not respect Rule 3 (it may be smaller
than the given minimal size). However, for all the other modules, both Rules are enforced properly. Note that
in table 4.1, the size of the smallest module is measured without counting this special module (which is very
often the smallest one).

Influence of min_size. A useful information that can be derived from the results is that acting on the
parameter min_size seems to be a reasonably efficient way to influence the characteristics of the resulting
modularization. Indeed, while the size of the smaller module obviously increases with min_size (following it
very closely in most of the cases), we can also observe that there is a clear influence of the parameter on the
number of modules in the results (which clearly decreases as min_size increases). However, surprisingly,
the time taken to execute the partitioning algorithm is relatively constant and does not seem to be influenced
by the parameter.

2http://www.inrooh.net/ontologies/arabicitontology.owl
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Ontology nb entities nb axioms time (ms)

FAO’s Gears ontology 92 956 211
FAO’s Vessels ontology 148 1,702 1,127
Arabic Ontology4 439 2,044 27,469
Sequence ontology5 3,509 12,225 239,414
FAO’s Commodities ontology 1,394 111,361 3,414,307

Table 4.2: Influence of the size of the ontology on the execution time of the partitioning algorithm. nb entities
corresponds to the size in number of classes, properties and individuals of the original ontology, nb axioms
to the size in number of axioms, and time(ms) to the time taken to execute the partitioning algorithm.

Figure 4.3: Execution time of the algorithm depending on the size of the original ontology.

Comparison with SWOOP. The SWOOP3 ontology editor includes a feature for partitioning ontologies
based on the ε-connection formal framework. We applied this feature on the same ontology as above. It is
worth mentioning that SWOOP does not provide any way to act on the partitioning method, as there is no
other input to the algorithm than the ontology. While the results are obtained faster with SWOOP (less than
a second), they are actually quite disappointing as only one module is returned, which contains the same
elements as the original ontology. It has been shown in [dSSS07] that this result is quite common and was
also obtained with several other ontologies.

Response time. One important element in this evaluation concerns the execution time of the technique.
We already established above that this time does not seem to be influenced by the min_size parameter.
The other parameter that could influence the performance of the plugin is the ontology, or more precisely, its
size. We ran our technique on five different ontologies with varying sizes (from a quite small one, to a very
large one) with a min_size parameter at 5 (the default value). The results are summarized in Table 4.2. It
can be easily observed from these results that the time taken to execute the algorithm varies linearly with the
size of the ontology (in number of axioms, see Figure 4.3).

3http://code.google.com/p/swoop/



D1.1.4 NeOn Formalism for Modularization: Implementation and Evaluation Page 31 of 44

Chapter 5

Extracting Modules From Ontologies

The task of module extraction consists in creating a new module by reducing an ontology to the sub-part
that covers a particular sub-vocabulary. This task has been called segmentation in [SR06] and traversal
view extraction in [NM04]. More precisely, given an ontology O and a set SV ⊆ Sig(O) of terms from the
ontology, a module extraction mechanism returns a module MSV , supposed to be the relevant part of O that
covers the sub-vocabulary SV (Sig(MSV ) ⊇ SV ).

In [dHR+08], we proposed the definition of a Reduce operator for modules as follows:

Description This operator reduces the content of a module according to a particular interface. It is supposed
to keep only the axioms that have an influence on the interpretation of the entities in the interface.

Signature Reduce : Module× Interface → Module

Semantics for any axiom α, Reduce(M, I) |= α iff M |= α ∧ Sig(α) ⊆ I .

Properties Reduce(OM, Sig(OM)) = OM, Reduce(OM, ∅) = empty_module

Examples A number of use cases explicitly rely on the feature provided by the reduce operator. In partic-
ular, this operation is often considered as a possible way to improve performance of reasoning with
the ontology, by allowing the reasoner to focus only on the relevant part of the ontology in a given
application.

On of the major problems related to this task of extracting modules from ontologies is that there is no clear
definition of what should be in a module, i.e. what is relevant to a given sub-vocabulary of an ontology. Some
techniques take a purely formal approach to this problem, defining logical criteria to find out what should be
in a module. Some others rely on the traversal of the graph of relations that links ontological entities with
each other. Each of these techniques is well suited only in a limited number of specific scenarios [dSSS07].
Also, while the fact that all these techniques take as input a sub-vocabulary of the ontology does not neces-
sarily mean that the coverage of this vocabulary is the only criterion applied, other operators could consider
other kinds of input to extract modules (based for example on the design properties of the modules or on
the language applied in the labels of the entities). In this implementation, to avoid introducing even more
heterogeneity, we choose to consider only operators with a set of entities of the ontology as input.

In this chapter, after a quick reminder about existing techniques for extracting modules, we present our im-
plementation of the module extraction plugin for the NeOn Toolkit. With this plugin, considering the problem
described above, we promote a different approach, where the ontology engineer can flexibly and interac-
tively select, execute and combine a variety of techniques, until obtaining a satisfactory module, fulfilling the
requirements of the given application scenario.

2006–2008 c© Copyright lies with the respective authors and their institutions.
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5.1 Ontology Module Extraction Techniques

Techniques for module extraction often rely on the so-called traversal approach: starting from the elements of
the input sub-vocabulary, relations in the ontology are recursively “traversed” to gather relevant (i.e. related)
elements to be included in the module.

Such a technique has been integrated in the PROMPT tool [NM04], to be used in the Protégé environment.
This approach recursively follows the properties around a selected class of the ontology, until a given distance
is reached. The user can exclude certain properties in order to adapt the result to the needs of the application.

The mechanism presented in [SR06] starts from a set of classes of the input ontology and extracts related
elements on the basis of class subsumption and OWL restrictions. Some optional filters can also be activated
to reduce the size of the resulting module. This technique has been implemented to be used in the Galen
project and relies on the Galen Upper Ontology.

In [Stu06], the author defines a viewpoint as being a sub-part of an ontology that only contains the knowledge
concerning a given sub-vocabulary (a set of concept and property names). The computation of a viewpoint
is based on the definition of a viewpoint dependent subsumption relation.

Inspired from the previously described techniques, [dSM06] defines an approach for the purpose of the
dynamic selection of relevant modules from online ontologies. The input sub-vocabulary can contain either
classes, properties, or individuals. The mechanism is fully automatized and is designed to work with different
kinds of ontologies (from simple taxonomies to rich and complex OWL ontologies) and relies on inferences
during the modularization process.

Finally, the technique described in [DTI07] is focused on ontology module extraction for aiding an Ontology
Engineer in reusing an ontology module. It takes a single class as input and extracts a module about this
class. The approach it relies on is that, in most cases, elements that (directly or indirectly) make reference to
the initial class should be included.

5.2 A Plugin for Interactive Module Extraction based on Multiple Operators

In [dSSS07] we have shown through a number of experiments that extracting a module from an ontology is an
ill-defined task: the criteria used to decide what should go in a module and what is a good, relevant module
are highly dependent on the specificity of the application scenario. In other terms, there is no universal,
generic module extraction approach. This appeared also very clearly in the different use cases described in
[dHR+08], where different users, in different contexts, provided completely different perspectives about what
should go in a module. In general, what appeared from these use cases is that:

1. Users have different, more or less well defined ideas about what module extraction should do, varying
from very elementary cases (e.g. extract a branch) to complex, abstract requirements (should extract
everything that helps in interpreting a particular entity). Hence, each of the scenarios we encountered
would require a different approach for module extraction.

2. Users want to keep in control of the way the module is created. It is required to support the parametri-
sation of the module extraction for the user to be able to really “chose” what goes into the module.

For these reasons, we implemented a plugin for module extraction that provides an interactive and iterative
approach for this task. This plugin integrate a number of different “operators” for module extraction, most
of them being relatively elementary (extract all the super/sub-classes of a given set of entities, all the other
entities they depend on, etc.)

The interface for this plugin (see Figure 5.1) simply allows the user to easily combine these different elemen-
tary operators in an interactive way. A initial module can be created, using particular parameters (here the
recursion level), obtaining an initial set of entities to be included. Then another operator can be used, on
other entities and other parameters, to refine the module and extend it with other entities, until an appropriate
module is created. At any point of the process, previous operations can be un-done and the module cleared.
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Figure 5.1: Screenshot of the ontology module extraction plugin.

In addition, the plugin provides straightforward functions to facilitate the selection of the entities to consider
for module extraction. This includes restricting the visualization to classes, properties or individuals, and
searching for entities matching a specific string. Once a module is created, it can simply be saved as part
of the current ontology project and become itself processable as an ontology (module) to be composed or
partitioned using the other modularization plugins.

5.3 A Plugin for Locality-based Modules

A completely different approach to specify what should be in a module is based on logical properties. Intu-
itively, a minimal module should contain exactly those axioms that are relevant for a particular interface (also
called signature in this context), i.e. it should preserve all entailments, while at the same time no axioms
should be included that are not needed to preserve the entailments.

For general description logics, it has been shown that is undecidable to compute minimal modules. But good
approximations have been proposed. The approximations ensure that all entailments are preserved, but it
may be that the modules contain some axioms that are not relevant.

One well established approximation is based on the notion of of syntactic locality and locality-based module,
which have been first introduced in [GHKS07]. Syntactic locality is used to define the notion of module for a
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Name Syntax Semantics
top > ∆I

concept name A AI ⊆ ∆I

nominal {a} {aI}
negation ¬C ∆I\CI

conjunction C uD CI ∩DI

exists restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
at-least restriction ≥ n s.C {x ∈ ∆I | ]{y : (x, y) ∈ sI ∧ y ∈ CI} ≥ n}
role name r rI ⊆ ∆I ×∆I

inverse role r− {(x, y) ∈ ∆I ×∆I | (y, x) ∈ rI}
role hierarchy r v s rI ⊆ sI

transitivity Trans(r) (x, y), (y, z) ∈ rI implies (x, z) ∈ rI

GCI C v D CI ⊆ DI

Table 5.1: Syntax and semantics of SHOIQ concepts and axioms.

signature, i.e., a subset of the ontology that preserves the meaning of names in the signature.

To make the deliverable self-contained, we first need to introduce the Description Logic (DL) SHOIQ which
is the underpinning DL formalism for OWL and used in our approach.

Starting with disjoint sets of concept names CN, role names RN and individuals Ind, a SHOIQ-role is
either a role name r ∈ RN or an inverse role r− with r ∈ RN. We denote by Rol the set of all SHOIQ-
roles. SHOIQ-concepts can be built using the constructors shown in the upper part of Table 5.1, where
a ∈ Ind, r, s ∈ Rol with s a simple role1, n is a positive integer, A ∈ CN, and C,D are SHOIQ-concepts.2

We use the standard abbreviations: ⊥ stands for ¬>; C t D stands for ¬(¬C u ¬D); ∀r.C stands for
¬(∃r.¬C); and ≤ ns.C stands for ¬(≥ (n + 1)s.C). We denote by Con the set of all SHOIQ-concepts.

A SHOIQ ontology O is a finite set of role hierarchy axioms r v s, transitivity axioms Trans(r), and a
general concept inclusion axioms (GCIs) C v D with r, s ∈ Rol and C,D ∈ Con.3 We use the notation
Sig(O) to denote the signature of the SHOIQ ontology O, i.e., the disjoint union of CN(O), RN(O) and
Ind(O). Similarly, we write Sig(r), Sig(C) and Sig(α) to denote the signature of a role, a concept and an
axiom, respectively.

We can now define come back to the definition of syntactic locality.

Definition 3 (Syntactic locality for SHOIQ) Let S be a signature. The following grammar recursively de-
fines two sets of concepts Con⊥(S) and Con>(S) for a signature S:

Con⊥(S) ::= A⊥ | (¬C>) | (C u C⊥) | (∃r⊥.C) | (∃r.C⊥)
| (≥ n r⊥.C) | (≥ n r.C⊥)

Con>(S) ::= (¬C⊥) | (C>
1 u C>

2 )

where A⊥ 6∈ S is a concept name, C is a SHOIQ-concept, C⊥ ∈ Con⊥(S), C>
i ∈ Con>(S) (for i = 1, 2),

and Sig(r⊥) 6⊆ S.

An axiom α is syntactically local w.r.t. S if it is of one of the following forms: (i) r⊥ v r, (ii) Trans(r⊥), (iii)
C⊥ v C or (iv) C v C>. The set of all SHOIQ-axioms that are syntactically local w.r.t. S is denoted by
s_local(S). A SHOIQ-ontology O is syntactically local w.r.t. S if O ⊆ s_local(S).

Based on this notion, locality-based modules can be defined as follows: Let O be a SHOIQ ontology,
O′ ⊆ O a subset of it, and S a signature. Then, O′ is a locality-based module for S in O if every axiom
α ∈ O\O′ is syntactically local w.r.t. S ∪ Sig(O′). Given an ontology O and a signature S, there always
exists a unique, minimal locality-based module [CHKS08], denoted by Oloc

S .

1A simple role is neither transitive nor a superrole of a transitive role.
2Concepts and roles in DL correspond to classes and properties in OWL, respectively.
3A concept definition A ≡ C is an abbreviation of two GCIs A v C and C v A, while ABox assertions C(a) and r(a, b) can be

expressed as the GCIs {a} v C and {a} v ∃r.{b}, respectively.
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Ontologies ]Axioms ]Concepts ]Roles Module size Extraction time
Average Maximum (sec)

GALEN 4 529 2 748 413 75 530 6
GO 28 897 20 465 1 16 125 40
NCI 46 940 27 652 70 29 436 65

Table 5.2: Benchmark ontologies and their characteristics.

We have implemented a plugin that computes these locality-based modules within the NeOn Toolkit. The
interaction is very simple: The user simply specifies the signature (interface), the plugin computes the module
as a result.

5.4 Example Uses and Evaluation

We now present an example of how modularization based on module extraction can be used to speed up
reasoning tasks. We consider as specific reasoning task finding the justifications for an entailment (i.e.,
minimal sets of axioms responsible for it). Finding justifications is important in ontology engineering, as justi-
fications facilitate important tasks like debugging inconsistencies or undesired subsumption. Though several
algorithms for finding all justifications exist, issues concerning efficiency and scalability remain a challenge
due to the sheer size of real-life ontologies. Based on the notion of locality-based modules, in [SQJH08] we
proposed a method for finding all justifications in OWL DL ontologies by limiting the search space to smaller
modules. In the paper, we showed that so-called locality-based modules cover all axioms in the justifications.

Intuitively, the (minimal) locality-based module for S = {A} in a OWL DL ontologyO contains all the relevant
axioms for any subsumption σ = (A vO B), in the sense that all responsible axioms for σ are included.
In other words, in order to find all justifications for a certain entailment in an OWL ontology, it is sufficient to
consider only axioms in the locality-based module. Since the minimal locality-based modules are relatively
small (see, e.g., [GHKS07, Sun08]), our modularization-based approach proves promising.

For the details, theory and algorithms of how the locality-based modules are used to find entailments, we
refer the reader to [SQJH08].

We here briefly summarize the empirical results that demonstrate an improvement of several orders of mag-
nitude in efficiency and scalability of finding all justifications in OWL DL ontologies.

Our algorithm has been realized by using KAON2 (the default reasoner of the NeOn Toolkit) as black box
reasoner. To fairly compare with the pinpointing algorithm in [KPHS07], we re-implemented it with KAON2
API (henceforth referred to as ALL_JUSTS algorithm). The experiments have been performed on a Linux
server with an Intel(R) CPU Xeon(TM) 3.2GHz running Sun’s Java 1.5.0 with allotted 2GB heap space.

Benchmark ontologies used in our experiments are the GALEN Medical Knowledge Base4, the Gene On-
tology (GO)5 and the US National Cancer Institute thesaurus (NCI)6. The three biomedical ontologies are
well-known to both the life science and Semantic Web communities since they are employed in real-world
applications and often used as benchmarks for testing DL reasoners. Both GO and NCI are formulated in
the lightweight DL EL, while GALEN uses expressivity of the more complex DL SHF . Some information
concerning the size and characteristics of the benchmark ontologies are given in the left part of Table 5.2.

Modularization reveals structures and dependencies of concepts in the ontologies as argued in [CHKS08,
Sun08]. We extracted the (minimal) locality-based module for S = {A} in O, for every benchmark ontology
O and each concept name A ∈ CN(O). The size of the modules and the time required to extract them are
shown in the last three columns of Table 5.2. Observe that the modules in GALEN are larger than those in
the other two ontologies although the ontology itself is smaller. This suggests that GALEN is more complex
in the sense that more axioms in it are non-local (thus relevant) according to Definition 3.

4http://www.openclinical.org/prj_galen.html
5http://www.geneontology.org
6http://www.mindswap.org/2003/CancerOntology/nciOntology.owl
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In the experiments, we consider three concept names in CN(O) for each benchmark ontology O such that
one of them has the largest locality-based module7. For the sake of brevity, we denote by subs(O) the set
of all tested subsumptions A v B in O, with A one of the three concept names mentioned above and B an
inferred subsumer of A. For each O of our benchmark ontologies, we compute all justifications for σ in O,
where σ ∈ subs(O). In order to compare with state-of-the-art, existing approaches (that are not based on
modularization), we perform the following for each σ and O to compute all justifications:

1. ALL_JUSTS(σ,O) (i.e., the algorithm in [KPHS07]).

2. REL_ALL_JUSTS(σ,O, srel ) (i.e., the algorithm in [JQH08]);

3. MODULE_ALL_JUSTS(σ,O);

To visualize the time performances of the three algorithms, we randomly selected two subsumptions σ1 and
σ2 from subs(O) for each ontology O and compared their computation time required by the three algorithms.
These subsumptions are shown as follows:

GALEN:X1 AcuteErosionOfStomach v GastricPathology
GALEN:X2 AppendicularArtery v PhysicalStructure

GO:X1 GO_0000024 v GO_0007582
GO:X2 GO_0000027 v GO_0044238
NCI:X1 CD97_Antigen v Protein
NCI:X2 APC_8024 v Drugs_and_Chemicals

The chart in Figure 5.2 depicts the overall computation time required for each algorithm to find all justifica-
tions for each tested subsumption. Unlike the time results reported in [KPHS07], which excluded the time
for satisfiability checking, we report here the overall computation time, i.e. the total time of the algorithm
including the time needed by the black-box reasoner for the standard reasoning tasks. Observe that both
ALL_JUSTS and REL_ALL_JUSTS did not yield results within the time-out of two hours on three out of
six tested subsumptions (marked by “TO” on the chart). Comparing these two algorithms (without modu-
larization), REL_ALL_JUSTS performs noticeably better than ALL_JUSTS in most cases. For instance, on
the subsumptions GALEN:X2 and NCI:X2, REL_ALL_JUSTS outperforms ALL_JUSTS by about 10 and 20
minutes, respectively. On the subsumption GO:X2, both algorithms show a similar performance, i.e., time
difference is less than a minute. More explanations on comparison between these two algorithms can be
found in [JQH08].

Interestingly, MODULE_ALL_JUSTS outperforms all the other algorithms on all subsumptions, and the im-
provement is tremendous as can be seen in all cases in the chart. As an example, MODULE_ALL_JUSTS
took only 0.6 seconds to find all the justifications for NCI:X2, while REL_ALL_JUSTS needed 3 242 sec-
onds. In this case, the locality-based module for APC_8024 in NCI consists of 9 axioms, whereas the whole
ontology has some tens of thousands of axioms.

7The concept name with largest module is hand-picked in order to cover hard cases in our experiments, while the other two are
randomly selected.
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Figure 5.2: The time performance of three algorithms for finding all justifications.
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Part III

Discussion
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Chapter 6

Other Aspects of Modularization

In this chapter, we briefly summarize other ongoing work related to modularization and that will be considered
in more details in other deliverables.

6.1 Methodological Guidelines for Modularization

Designing ontologies in a modular way is generally considered as a good practice. However, there are
scenarios where an ontology designer need to reuse or exploit an ontology that has not been modularized at
design time, or for which the criteria applied for distinguishing modules do not fit the particular requirements
of his/her current application. This task of creating modules from an existing ontology is supported by several
plugins described in the second part of this document.

To obtain a module or a set of modules from an ontology that suits the requirements of a particular
application, there is a clear need for a guideline, a method, supporting developers in selecting and applying
the appropriate techniques. For this purpose, we devise an ontology modularization guideline, to be part of
the NeOn methodology and that will be described in deliverable 5.4.2.

The major issue faced by ontology engineers when applying ontology modularization techniques is that the
task is relatively ill-defined. Indeed, the criteria to decide how modules should be identified, created and
extracted my vary a lot from one scenario to another [dHR+08]. For this reason, as depicted in figure 6.1, we
promote an iterative and interactive approach to modularization, where the ontology engineer (with the help
of domain experts) can apply a variety of techniques, evaluate the results and refine them, until obtaining a
satisfactory, tailored made (set of) module(s). This approach is well supported by the modularization support
implemented within the NeOn Toolkit, as described in this document.

As part of building this guideline, we will also study a complete experiment of modularizing an ontology,
in a real-life scenario. For this experiment, we will use the plugins described in this deliverable and the
guideline devised in workpackage 5. This will provide a complete evaluation of both the tool support and the
methodology for modularization in NeOn, complementing the tests described in this document on individual
components.

6.2 Reasoning with Modules

In [dHR+08], we described the semantics of the NeOn formalism for ontology modules, which fixes the way
logical consequences can be derived from modules linked by mappings. This semantics is based on the
IDDL formalism. It establishes the formal foundation for a reasoner on interlinked ontology modules.

In this section, we briefly summarize an algorithm for reasoning on modular ontologies with the IDDL seman-
tics and an IDDL reasoner based on the presented algorithm. These elements constitute the first step towards

2006–2008 c© Copyright lies with the respective authors and their institutions.
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Figure 6.1: Workflow for the task of modularizing an existing ontology. This figure summarizes the activities
realized as part of this task, as they will be described in deliverable 5.4.2.

a more general reasoner for networked ontologies, which will be described as part of deliverable D1.4.4. This
is the reason why only a brief summary is presented here.

6.2.1 Reasoning with IDDL Modules

Interpreting the local content of a module is equivalent to interpreting axioms of a non-modular ontology.
Since the formalism used to write axioms in our module framework is based on OWL, this local semantics
corresponds to a description logic semantics.

A mapping connects entities from 2 different ontologies or modules. Interpreting them implies interrelating
both ontology (or module) interpretations. Entities appearing in a correspondence can be interpreted accord-
ing to the ontology language semantics. Since each ontology may be interpreted in different domains, we
defined a notion of equalising function which helps making these domains commensurate (see [dHR+08])
by relating them to a common general domain.

The IDDL reasoner checks the consistency of a distributed modular ontology (see [?]). It works by having a
module reasoner communicate with imported modules’ reasoners. Each module reasoner acts as a reason-
ing oracle for the others, meaning that, considering an ontology O in a logic L (with PL the set of axioms in
L), they implement a boolean function F : PL → Bool which returns F (A) = ConsistencyL(O ∪A), for all
sets of axioms A ∈ PL.

The algorithm consists in chosing a set of concepts over the set of all concepts of the mappings between
modules. The axioms associated with this set are then sent to the oracles to verify the consistency of the
resulting ontologies. If they all return true (i.e., they are all consistent with these additional axioms) then the
modular ontology is consistent. Otherwise, another set of concepts must be chosen. If all sets have been
tested negatively, the modular ontology is inconsistent. Since there is a finite number of configurations, this
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algorithm is correct and complete.

6.2.2 Implementation

The IDDL reasoner provides a basic interface to check consistency of an ontology module which consists
of a set of imported ontologies in OWL and mappings between them. The current IDDL reasoner uses the
Pellet reasoner as local reasoner for checking consistency of an imported ontology from an ontology module.
The interface between the IDDL reasoner and local reasoners is designed so that any other reasoner, e.g.
FaCT++, Racer, Drago, etc., can easily replace Pellet. Additionally, the IDDL reasoner uses the Alignment
API [?] to manipulate correspondences during the reasoning process.

The reasoner also offers a possibility to get an explanation for the inconsistency of an IDDL system.

The IDDL reasoner plug-in for the NeOn Toolkit relies on the IDDL reasoner, and the core module API, which
provides basic operations to manipulate ontology modules and mappings. It offers to users an interface to
obtain an answer for consistency from the IDDL reasoner. In the case where the answer is negative, the
plug-in can obtain an explanation indicating concepts and/or correspondences which are responsible for that
inconsistency.
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Chapter 7

Conclusion

In this document, we described the implementation of the NeOn toolkit support for ontology modularization,
considering both aspects of designing modular ontologies and creating modules from existing ontologies.
This area of ontology modularization has been attracting more and more attention in the last few years, as
complex ontologies are being created and maintained in concrete applications. However, the results from
the research community in this area are still very rarely applied concretely. This is due in particular to the
difficulty of finding a common view on modularization. Many studies have been looking at ways to formalize
the notion of modules in modular ontology languages, while other are considering the task of decomposing
ontologies and extracting modules from them. Even within these two perspectives, different views appear, as
the requirements from applications may vary a lot, providing many possible understanding of what ontology
modularization could mean. As a consequence, until now, the research community has failed to propose
proper tool support for ontology engineer in need of concrete solutions for ontology modularization.

In this deliverable, we have tackled this situation by implementing a comprehensive set of tools, supporting
ontology modularization in its many aspects. Following the formalism proposed in [dHR+08], we imple-
mented a basic framework for specifying ontology modules within the NeOn Toolkit. Using this generic
framework, we proposed a number of plugins, implementing various operators for manipulating modules. In
a nutshell, we provide a complete, integrated environment for ontology modularization, which is made of a
several, interoperable components each handling a different task. The added-value of such developments
within the NeOn Toolkit goes beyond the availability of each individual tool. Indeed, the NeOn toolkit support
for modularization makes it easy for ontology engineers to handle ontology modules in a controlled, interac-
tive manner, by allowing them to create, edit, manipulate, extract, decompose, and combine modules within
the same ontology editor and in an homogeneous way.

To complement this implementation work, we are currently looking at other aspects to support regarding
ontology modularization. In particular, for the usage and deployment of ontology modules in applications, we
are developing a reasoner for networked ontologies, able to handle distributed modules based on the IDDL
semantics for mappings. Also, the interactive and iterative approach we promote for ontology modularization
requires proper methodological guidelines, supporting ontology engineers in selecting, evaluating and refin-
ing ontology modules. Such guidelines will be provided as part of the NeOn methodology, on the basis of the
tools described here.
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