

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.4.4 Reasoning over Distributed Networked
Ontologies and Data Sources

Deliverable Co-ordinator: Georgios Trimponias, Peter Haase

Deliverable Co-ordinating Institution: Universität Karlsruhe (TH) (UKARL)

Main Author: Georgios Trimponias (UKARL)

Other Authors: Chan Le Duc, Antoine Zimmermann (INRIA), Simon Schenk
(UKOB)

Document Identifier: NEON/2009/D1.4.4/v1.0 Date due: February 28, 2009
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 28, 2009
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 2 of 93 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 3 of 93

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• UKARL

• ONTO

• UKOB

• INRIA

Change Log

Version Date Amended by Changes
0.1 24.11.2008 Georgios Trimponias Initial creation of document
0.3 01.02.2008 Georgios Trimponias Chapters 1, 2, 3, 4, 8
0.4 07.02.2008 Chan Le Duc Chapter 6
0.5 23.02.2008 Simon Schenk Chapter 7
0.6 24.02.2008 Georgios Trimponias Chapter 5
0.9 26.03.2008 All authors Modifications after review
1.0 27.03.2008 Georgios Trimponias Final Version

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 4 of 93 NeOn Integrated Project EU-IST-027595

Executive Summary

The concept of the semantic web is based on the ability to reason over explicitly declared or defined knowl-
edge, so as to infer new, implicit knowledge in a sound way. The ontology, as a shared specification of a
conceptualization, provides the basic tool for explicitly authoring this specified knowledge. Towards this di-
rection, the World Wide Web Consortium has already endorsed the Web Ontology Language (OWL). OWL
consists of a family of languages, diversified along their expressiveness and decidability. It is based on differ-
ent fragments of Description Logics, a powerful fragment of First Order Predicate Calculus, which allows for
knowledge description in a formal and well-understood way. On the other hand, the reasoning component
has been primarily served by the theoretical results on description logics and as a result efficient reasoners
have been proposed and implemented.

Theoretical research and practical implementations so far have usually focused on the centralized reasoning
paradigm. Under this paradigm, one can assume the existence of one global ontology, defining a number
of concepts and their relationships as well, and of a reasoner that executes a reasoning algorithm on the
ontology and produces the inferred knowledge. Such a model, however, does not mirror the aspirations of
the Semantic Web. Indeed, we argue that more has to be done, since large-scales are an indispensable part
of the semantic web vision.

In the current Deliverable we aim at investigating the distributed aspects of knowledge representation for-
malisms and the reasoning procedures they are equipped with. Moreover, we propose three novel ap-
proaches that deal with the problems of 1) efficient reasoning in distributed knowledge bases, 2) reasoning
with integrated distributed description logics, and 3) reasoning with (distributed) temporarily unavailable data
sources, respectively.

In this direction, the Deliverable is organized as follows:

• Chapter 1 introduces the general motivation behind distributed knowledge representation formalisms
and distributed inference processes and presents a number of interesting dimensions/features that are
later used for a comparative analysis of various approaches.

• Chapter 2 attempts to demonstrate how the current Deliverable is highly related to the ongoing work
in the main NeOn use case studies, namely the fisheries ontology of Work Package 7 and the invoice
ontology of Work Package 8.

• Chapter 3 is a very central Chapter of the current work, as it investigates the state of the art in dis-
tributed knowledge representation formalisms and the corresponding inference procedures and makes
a comparative analysis along the dimensions proposed in Chapter 1.

• Chapter 4 is devoted to the presentation of 1) the extended OWL metamodel for E-Connections, which
was initially introduced in the Deliverable 1.1.5, and 2) repeats the metamodel for mapping support in
OWL, which has already been presented in Deliverable 1.1.2. The choice to repeat it in this deliverable
is not accidental and reflects its high relevance to the subject of distributed knowledge representation
formalisms.

• Chapter 5 presents a new approach for efficient reasoning with large data volumes (ABoxes). More
concretely, it considers a number of ontologies connected with E-Connections, then transforms them

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 5 of 93

into an equivalent EL++knowledge base, which is then transformed into an equivalent Datalog pro-
gram. We then use this program for conjunctive query answering with PTIME Data Complexity.

• Chapter 6 proposes the integrated distributed description logic formalism (IDDL) and, moreover, de-
scribes a reasoning process in the context of this formalism. IDDL has already been presented in
Deliverable 1.3.3 for formalizing modular ontologies. Since Deliverable 1.3.3 deal with formalization of
modular ontologies, it did not involve reasoning procedure for IDDL.

• Chapter 7 introduces an approach based on multi-valued logics for dealing with temporarily unavailable
data sources. This work has also been described in Deliverable 1.2.4 as they share the technical
foundations. More precisely, Chapter 7 is a specialized application of the more general idea described
in Deliverable 1.2.4.

• Chapter 8 contains the conclusion of the deliverable, along with some open challenges for future
research.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 6 of 93 NeOn Integrated Project EU-IST-027595

Contents

1 Introduction 11
1.1 Background and Motivation . 11

1.2 Distributed Ontologies versus Distributed Reasoning . 13

1.3 Dimensions of Interest . 14

1.4 Overview of the Deliverable . 15

2 Use Cases of Reasoning over Distributed Networked Ontologies 17
2.1 Introduction . 17

2.2 The FOA Case Study . 18

2.2.1 Objectives and User Requirements . 18

2.2.2 Reasoning over Distributed Networked Ontologies in the Context of WP7 Use Case . . 19

2.3 The Pharma Case Study . 20

3 State of the Art in Reasoning with Distributed Data - Distributed Reasoning 21
3.1 Introduction . 21

3.1.1 Related Work and Scope of the Chapter . 22

3.2 Distributed Description Logics . 23

3.2.1 Motivation . 23

3.2.2 Formalism . 23

3.2.3 Reasoning . 25

3.3 E-Connections . 26

3.3.1 Motivation . 26

3.3.2 Formalism . 26

3.3.3 Reasoning . 28

3.4 Distributed Terminological Knowledge under the Distributed First Order Logic Framework . . . 29

3.4.1 Formalism . 30

3.4.2 Associating Mapping Languages with the DFOL Formalism 31

3.5 Package-Based Description Logics . 32

3.5.1 Motivation . 32

3.5.2 Formalism . 33

3.5.3 Reasoning . 34

3.6 A Decentralized Consequence Finding Algorithm in a Peer-To-Peer Setting 36

3.6.1 Motivation . 36

3.6.2 Formalisms . 37

3.6.3 Reasoning . 39

3.7 A Mapping System for Query Answering in a Peer-To-Peer Setting 39

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 7 of 93

3.7.1 Motivation . 39

3.7.2 Formalisms . 40

3.7.3 Reasoning . 42

3.8 Conclusion . 43

4 Metamodels for E-Connections and Mapping Formalisms 45
4.1 The Extended OWL Metamodel for E-Connections . 45

4.1.1 Motivation of E-Connections . 45

4.1.2 Preliminaries . 46

4.1.3 The Link Property Entity . 46

4.1.4 Class Expressions . 47

4.1.5 Link Property Axioms . 49

4.1.6 Assertions . 50

4.2 Mapping Support (OWL) . 51

4.2.1 A Common MOF-based Metamodel Extension for OWL Ontology Mappings 51

4.2.2 OCL Constraints for C-OWL . 56

4.2.3 OCL Constraints for DL-Safe Mappings . 57

5 An integration of EL++ with E-Connections for Safe Conjunctive Query Answering 59
5.1 The Description Logic EL++ . 60

5.2 E-Connections of EL++ Components . 61

5.2.1 Abstract Description Systems . 61

5.2.2 E-Connections in Abstract Description Systems . 63

5.3 Translating the E-Connection of EL++ Components into an Equivalent EL++ Knowledge Base 64

5.4 DL-Safe Query Answering in the EL++ E-Connection . 66

5.4.1 Translating the E-Connection into Datalog . 66

5.4.2 DL-Safe Query Answering . 67

5.4.3 Algorithm for Conjunctive Query Answering . 68

6 Reasoning with Integrated Distributed Description Logics 69
6.1 Motivation . 69

6.2 Formalism . 70

6.2.1 Semantics of the local content of modules . 70

6.2.2 Satisfied mapping . 71

6.2.3 Global interpretation of modules . 71

6.2.4 Consequences of a module . 72

6.3 The IDDL Reasoner for Ontology Modules . 73

6.3.1 Algorithm and Optimization . 73

6.3.2 IDDL Reasoner API . 75

6.3.3 Further work . 76

6.4 Integration with the NeOn Toolkit . 76

6.4.1 Principle of the integration . 77

6.4.2 IDDL reasoner plug-in . 77

6.5 Use Example . 78

7 Reasoning with Temporarily Unavailable Data Sources 81

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 8 of 93 NeOn Integrated Project EU-IST-027595

7.1 FOUR . 82

7.2 FOUR− C . 82

7.3 Extension towards OWL . 84

7.4 Related Work . 86

7.5 Conclusion . 86

8 Discussion 87
8.1 Summary . 87

8.2 Challenges . 87

Bibliography 89

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 9 of 93

List of Tables

3.1 Comparison of the described approaches. 44

5.1 Concept Constructors in EL++: Syntax and Semantics . 61

7.1 Extended Class Interpretation Function . 85

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 10 of 93 NeOn Integrated Project EU-IST-027595

List of Figures

1.1 Distributed Ontologies versus Distributed Reasoning. 14

4.1 Extended metamodel: link property expressions . 47

4.2 Extended metamodel: link property restrictions . 48

4.3 Extended metamodel: link property cardinality restrictions . 49

4.4 Extended metamodel: link property axioms - part 1 . 50

4.5 Extended metamodel: link property axioms - part 3 . 51

4.6 Extended metamodel: link property axioms - part 2 . 52

4.7 Extended metamodel: assertions . 53

4.8 OWL mapping metamodel: mappings . 54

4.9 OWL mapping metamodel: queries . 55

5.1 Algorithm for Conjunctive Query Answering. 68

6.1 At each node, the left branch indicates that the concept Ck is asserted as an empty concept
(Ck v ⊥), while the right branch indicates a non empty concept (Ck(a)}). The thick path
indicates a possible configuration for the distributed system. 75

6.2 IDDL reasoner plug-in and related components. 77

6.3 An example of an ontology module with mappings. 78

6.4 A consistent IDDL system. 79

6.5 An inconsistent IDDL system. 80

7.1 FOUR− C . 83

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 11 of 93

Chapter 1

Introduction

1.1 Background and Motivation

The concept of the semantic web is based on the ability to reason over explicitly declared or defined knowl-
edge, so as to infer new, implicit knowledge in a sound way. The ontology, as a shared specification of a
conceptualization1, provides the basic tool for explicitly authoring this specified knowledge. Towards this di-
rection, the World Wide Web Consortium has already endorsed the Web Ontology Language (OWL). OWL
consists of a family of languages, diversified along their expressiveness and decidability. It is based on differ-
ent fragments of Description Logics, a powerful fragment of First Order Predicate Calculus, which allows for
knowledge description in a formal and well-understood way. On the other hand, the reasoning component
has been primarily served by the theoretical results on description logics and as a result efficient reasoners,
such as FACT++2, Pellet3, or KAON24 have been proposed and implemented.

These two dimensions of explicitly declared specifications on the one hand and implicitly inferred knowledge
on the other, along with the notion of the semantic web as defined and envisioned by Tim Berners Lee
and other researchers, have been thoroughly studied and have found their way to practical implementation.
Despite the impressive results in the field, we argue that more has to be done, since large-scales are an
indispensable part of this vision.

Theoretical research and practical implementations so far have usually focused on the centralized reasoning
paradigm. Under this paradigm, one can assume the existence of one global ontology, defining a number
of concepts and their relationships as well, and of a reasoner that executes a reasoning algorithm on the
ontology and produces the inferred knowledge. Such a model, however, does not mirror the aspirations of
the Semantic Web.

In the emerging semantic web universe it would be naive to assume the existence of such global ontologies
for every conceptualization. First, one would expect that different communities will provide different ontolo-
gies, or in other words different specifications of the same conceptualization. For example, the task and
purpose of the ontology heavily influences the ontology design, while cultural, organizational or administra-
tive aspects may well lead to ontologies with very different characteristics. (It is very interesting to notice that
though the formal definition of an ontology assumes a shared specification, in practice different perspectives
of the same concepts are to be expected). Furthermore, in practical applications where scalability, mainte-
nance, reuse and understandability parameters are of high importance, it is common practice to consider a
number of different ontologies, each of them covering a different subdomain of the application. For example,

1Some researchers tend to disagree with this definition, as in its heart lies the notion of conceptualization, for which no definition
is available. So, a number of problems arise with respect to what one means by a conceptualization. Does it, for example, just
encompass things of our real world, only well-understood objective terms or any mental construct? For their interest, these questions
remain beyond the scope of this report, so we have decided to use the definition without further thoughts.

2http://owl.man.ac.uk/factplusplus/.
3http://clarkparsia.com/pellet/.
4http://kaon2.semanticweb.org/.

2006–2009 © Copyright lies with the respective authors and their institutions.

http://owl.man.ac.uk/factplusplus/
http://clarkparsia.com/pellet/
http://kaon2.semanticweb.org/

Page 12 of 93 NeOn Integrated Project EU-IST-027595

in the context of the NeOn project5, the FOA6 ontology consists of a number of smaller ontologies covering
various aspects of interest, like fish species, landscapes or vessels.

Indeed, if we consider a target ontology describing a broader domain, then the description of this domain
might be distributed over a number of ontologies, that describe special subdomains of the larger domain. In
case they describe the same subdomain from a different perspective, then we can simply speak of ontologies
with different points of view. On the other side of the spectrum, when the subdomains are completely disjoint,
we are closer to the case of modularization, where each ontology can act as an (independent) module. It is
expected that in practical applications more complicated scenarios could appear more often, e.g. ontologies
with overlapping subdomains.

In general, an all-encompassing global ontology is very hard to achieve in practical scenarios. On the other
hand, a centralized inference process exhibits a number of significant shortfalls, making it in practice highly
inappropriate:

• When dealing with very large scales, e.g. the Internet scale, we could end up with a vast number
of different ontologies, whose physical integration would be infeasible. What would make sense in
such a setting is the establishment of suitable relationships (like for example mappings, connections,
links) that show how the different schemata are related one to another and then use the available
information during a (distributed) reasoning process. As an example of this approach, we mention the
Open Linked Data initiative7, which tries to extend the Web with a data commons by publishing various
open datasets as RDF on the Web and by setting RDF links between data items from different data
sources. This situation is actually reminiscent of how the Internet works in its present form: different
resources, written by people with different perspectives and needs, targeted to communities with very
different characteristics. There is every reason to believe that the semantic web should also have such
a form. In fact, being able to cope with this issue seems to be at the very heart of the semantic web
vision.

• For data whose size is typically much larger than the size of the schema, it is even more unrealistic
to create one global database, for the same reasons that this is impossible for relational databases.
Instead, decentralized infrastructures and networking are desired. Very similar arguments pushed
considerably the database research into the direction of distributed databases. In general, the bigger
the systems get, the harder the complexity issues.

• Even if we could overcome the obstacles of the integration process, it would be non-scalable and
consequently unrealistic to suppose that a centralized reasoning process can cope with ontologies of
very large sizes. There are of course techniques, like module extraction, whose goal is to extract only
this part of the ontology that is relevant to query answering, disregarding the rest of the ontology, but
they would be highly inefficient for very large ontology sizes, as the ones expected in the semantic
web. Instead, it would greatly help to keep the schemata separate (along with their relationships) and
to come up with a distributed reasoning procedure aiming at precipitating the reasoning task.

On the other hand, in comparison to the previous discussion, the benefits that the distribution of 1) the
inference process and 2) the ontologies bring about are mainly focused around the notion of complexity and
especially of scalability. As knowledge systems grow larger, a highly desirable property is actually their ability
to efficiently handle very large data volumes. Indeed, a prominent goal and research direction of database
systems, for instance, has always been scalability for querying data, as their size grows significantly. When
dealing with semantics, this goal must be extended to include scalability for reasoning on ontologies, since
apart from the explicitly authored knowledge, implicit knowledge can be additionally inferred (let alone how
the reasoning task is already exacerbated by the very costly algorithms).

5http://www.neon-project.org.
6http://www.fao.org/aims/neon.jsp.
7http://en.wikipedia.org/wiki/Linked_Data.

http://www.neon-project.org
http://www.fao.org/aims/neon.jsp
http://en.wikipedia.org/wiki/Linked_Data

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 13 of 93

Moreover, as is the case with all large knowledge and software systems, the system development is usually
realized in a collaborative way, where a number of different teams contribute different parts of the system.
Distribution can in this case play a catalytic role, as it facilitates development, evolution and maintenance
of the ontologies, while in the special case of modularization it allows ontology reuse. By contrast, a large
centralized ontology could make even simple tasks inflexible, time-taking and laborious.

The purpose of the current Chapter is to present existing approaches in the subject of distributed reasoning
with ontologies, by attempting at the same time a comparative analysis of them along different dimensions,
as explained later in more detail.

1.2 Distributed Ontologies versus Distributed Reasoning

At this stage, we should distinguish between the notions of distributed ontologies and distributed reasoning.

On the one hand, the notion of distributed ontologies refers to a collection of ontologies, physically or logically
dispersed over multiple nodes. It differs from the classical case of just one single ontology, in the sense that
in this case there are multiple ontologies residing on different nodes. A first example, well-studied in the
literature, is when the set of the ontologies under consideration describe the same domain and each of them
has its own point of view of the concepts that it defines. In that case, an additional set of relationships among
these ontologies can reveal how they are related. A second example, lying on a completely different direc-
tion, refers to a network of ontology modules covering different subdomains/aspects of one global ontology
and that should still be considered as a collection of distributed ontologies. The latter case is, for instance,
the case when partitioning a large ontology into smaller equivalent modules, and it can be considered as a
specific case of the more general notion of distributed ontologies as stated earlier. Nevertheless, throughout
this report emphasis will almost exclusively be laid on the first kind of ontology distribution, as the second one
is a subject of modularization and is beyond the scope of this work. From the previous subsection it imme-
diately follows that a network of distributed ontologies under the former approach is in the very nature of the
semantic web vision, where different communities provide various specifications of their conceptualizations,
and these conceptualizations are dispersed over the web.

On the other hand, the notion of distributed reasoning refers to the case where the reasoning procedure is not
centralized any more. For example, given a network of distributed ontologies, distributed reasoning decen-
tralizes the reasoning algorithm, so that the overall process can be split upon the various nodes and thus be
precipitated. So, the main focus in this case is to improve reasoning performance through distribution of the
reasoning task. Distributed reasoning tries to face the scalability challenge, by distributing the reasoning task
among different (sub)reasoners in a decentralized manner, thus making sure that the reasoning procedure
can handle even very large collections of ontologies, what would otherwise be a practically insurmountable
problem.

To be more concrete, even in this case these is often in literature an additional distinction: parallelized vs. dis-
tributed processes. Parallelized processes usually refer to centralized applications where the objective is to
increase system performance. Parallelization is, under this view, mainly concerned with partitioning a prob-
lem for performance. This is especially the case if there is a single ontology for which there is central control
of how to partition it. Moreover, parallelization can also deal with the problem of algorithmic parallelization
of the inference process. For example, when building a tableau for checking TBox consistency, we can deal
with the non-determinism introduced by disjunction by assigning the construction of the two branches of the
tableau to different processors and by then combining their results. Distribution, on the other hand, usually
refers to the case where the application is distributed across multiple physical locations. In this case, this
control is not given, thus such parallelization cannot be achieved in the same manner. Instead, what we are
interested in is decentralized reasoning procedures across the nodes of the application. So, while parallel
systems pay more attention to the cost/performance arguments, distributed systems often address issues
like distributed, heterogeneous components for which no global control is available. In the context of the
current survey, we will mainly focus on distributed rather than on parallelized reasoning.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 14 of 93 NeOn Integrated Project EU-IST-027595

Degree of Distribution

Classical
Reasoning

Partitioning/
Parallelization

Distributed
Reasoning

Centralized
Integration

O N T O L O G I E S A X I S

R
E
A
S
O
N
I
N
G

A
X
I
S

Degree of Distribution

Figure 1.1: Distributed Ontologies versus Distributed Reasoning.

We could furthermore say that the two different notions of distributed ontologies and distributed reasoning
provide us with two very interesting and useful dimensions, along which we can categorize the problem of
(distributed) reasoning with (distributed) ontologies. More concretely, by combining these two dimensions
we can derive four basic cases. These cases are graphically illustrated in Figure 1.1, using two axes, the
horizontal ontology axis, and the vertical reasoning axis. The two axes are orthogonal one to another and
they should rather be conceived as representing the distribution size in a continuous way.

The first case refers to the classic case, where we have one global ontology upon which we apply centralized
reasoning. The second one includes all problems where we have a single ontology, where the reasoning
procedure is distributed. For example, we could think of an ALC ontology, on which we apply distributed or-
dered resolution, as is suggested in [SS08b]. The second case is closer to what we called parallel reasoning
in the previous section and has also a great connection to the problem of partitioning a single ontology for
gaining performance. The third case refers to the case where we have a network of distributed ontologies, but
we only apply one reasoning procedure/reasoner. For instance, one could attempt to logically integrate the
networked ontologies through IDDLs [Zim07] and then apply a centralized reasoning procedure. The last
and most interesting one is the case where a network on distributed ontologies is available, upon which we
reason using distributed reasoning procedures. The last case will be thoroughly studied in the next sections
through a variety of existing methods. We also mention that in the bibliography this last paradigm is usually
simply called distributed reasoning.

1.3 Dimensions of Interest

Ultimate goal of the current presentation is the comparative analysis of the different approaches, so that
their different characteristics can be better understood and used in practise. For this purpose, we first need
to come up with dimensions of interest, along which the comparative study will take place8. The following

8Perhaps the use of the word dimension is not very proper. In other scientific contexts dimensions tend to refer to independent
features, whereas in the current context the dimensions are very interdependent one with another, as we will see later.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 15 of 93

dimensions are the ones that we will mainly deal with:

• The language dimension refers to the language that the explicit specifications are expressed in. As
mentioned earlier, ontologies are usually expressed using suitable fragments (depending on issues as
expressivity and tractability) of the Description Logics formalism.

• The relationships are very relevant to the subject of reasoning with distributed ontologies. As already
mentioned, distributed ontologies can contain different perspectives of conceptualizations, which are
then related in one way or another in the networked environment. For example, we could have ontology
modules distributed over the internet, which then import one another, as is the case with OWL. Or we
could organize our ontologies in package hierarchies and then create links between these different
packages. Networking relationships are of utmost importance in the context of this report and will be
later thoroughly analyzed.

• The reasoning task describes the main task of the reasoning procedure, that is what we expect the
reasoner to do. It can range from traditional reasoning tasks, such as concept subsumption and clas-
sification to more complex tasks, such as query answering.

• The reasoning paradigm depends on the underlying reasoning model of the reasoner. For example,
there is the extensively studied paradigm of tableaux-based methods in description logics.

• The algorithmic features, as the name suggests, are the dimension that includes all these character-
istics that we are usually interested in when studying an algorithm. These for example include the
complexity of the reasoning procedure or its scalability capabilities. Depending on the case, we could
also look into even more theoretical features, as for example decidability.

1.4 Overview of the Deliverable

The current report is briefly organized as follows:

• Chapter 2 provides use cases of reasoning over distributed networked ontologies.

• Chapter 3 provides the state of the art in reasoning with distributed data - distributed reasoning.

• Chapter 4 describes the metamodel for mapping support in OWL and the extended OWL metamodel
for dealing with E-Connections.

• Chapter 5 looks into distributed reasoning with E-Connections in the context of the FOA ontology.

• Chapter 6 examines the approach proposed at the [Zim07] regarding reasoning with integrated De-
scription Logics.

• Chapter 7 deals with reasoning with temporarily unavailable data sources.

• Chapter 8 summarizes the results and contains open problems for future research.

In order to structure the report in a uniform and comprehensible manner, every section is organized in a very
similar way. A motivation part discusses the problems that are addressed by the approach under considera-
tion, then a formalism part presents (briefly) the syntax and semantics and finally a reasoning part describes
procedures that are used for reasoning under this formalism.

The current Chapter will, of course, not even attempt to give an overview of all techniques that have been
proposed for distributed reasoning in description logics, as that would be well beyond its scope. Instead,
we have chosen to concentrate on a number of approaches that are well studied in the literature and/or
come with a system implementation. The main motivation behind this has to do with the objective of the

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 16 of 93 NeOn Integrated Project EU-IST-027595

survey, which is not so much about presenting all formalisms, but rather about attempting to show how the
different formalisms approach the problem of distributed reasoning and in what ways the are the same or
they differ. In other words, ultimate goal is the demonstration of the challenges that can arise when building
distributed systems and how each of these approaches tackles some of these challenges. Moreover, for the
approaches that are discussed in the context of the current report we have chosen not to go into details about
their formalisms, reasoning processes, applications etc., but rather to focus on a more restricted part that is
enough to demonstrate the main ideas behind the method. This is in accordance with what we consider the
general objectives of any survey, namely summarization and comparison.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 17 of 93

Chapter 2

Use Cases of Reasoning over Distributed
Networked Ontologies

2.1 Introduction

As already stated in Chapter 1, targeting in practice an all-encompassing ontology is a very unrealistic goal.
Regardless of the scenario under consideration, a centralized inference process on an all-encompassing
global ontology exhibits a number of significant shortfalls, making it in practice highly unrealistic. Let us
briefly summarize them:

• When dealing with very large scales, e.g. the Internet scale, we could end up with a vast number of
different ontologies, whose physical integration would be infeasible. What would make sense in such
a setting is the establishment of suitable relationships (like for example mappings, connections, links)
that show how the different schemata are related one to another and then use the available information
during a (distributed) reasoning process.

• For data, whose size is typically much larger than the size of the schema size, it is even more unrealistic
to create one global database, for the same reasons that this is impossible for relational databases.
Instead, decentralized infrastructures and networking are desired.

• Merging different schemata is an immensely difficult process, with many obstacles that have to be
surpassed, and for which automatic algorithms are very hard to design.

• Even if we could overcome the obstacles of the integration process, it could be quite non-scalable to
assume that a centralized reasoning process can cope with ontologies of very large sizes.

On the other hand, in comparison to the previous discussion, the benefits that the distribution of 1) the
inference process and 2) the ontologies bring about are mainly focused around the notion of complexity and
especially of scalability. As knowledge systems grow larger, a highly desirable property is actually their ability
to efficiently handle very large data volumes. Indeed, a prominent goal and research direction of database
systems, for instance, has always been scalability for querying data, as their size grows significantly. When
dealing with semantics, this goal must be extended to include scalability for reasoning on ontologies, since
apart from the explicitly authored knowledge, implicit knowledge can be additionally inferred (let alone how
the reasoning task is already exacerbated by the very costly algorithms).

Moreover, as is the case with all large knowledge and software systems, the system development is usually
realized in a collaborative way, where a number of different teams contribute different parts of the system.
Distribution can in this case play a catalytic role, as it facilitates development, evolution and maintenance
of the ontologies, while in the special case of modularization it allows ontology reuse. By contrast, a large
centralized ontology could make even simple tasks inflexible, time-taking and laborious.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 18 of 93 NeOn Integrated Project EU-IST-027595

To make the previous discussion/motivation a bit more specific and to better illustrate the reasons that make
(distributed) reasoning with distributed ontologies so necessary, in this chapter we will attempt to present use
case scenarios in the context of the NeOn Project, where 1) distribution in ontologies/data sources, and/or
2) decentralized inference processes can indeed lead to a number of specific benefits.

2.2 The FOA Case Study

One of the two major case studies in the NeOn Project (with the other one being the WP8 pharmaceutical
ontology case study) is the WP7 case study, which deals with the creation of an ontology-driven Fisheries
Stock Depletion Assessment System (FSDAS). This system will use FAO and non-FOA resources on Fish-
eries to assist in the assessment of fish stock and will be empowered by means of a network of ontologies.
The user requirements for this case study are included in the Deliverable 7.1.2 "Revised Specifications of
User Requirements for the Fisheries Case Study". In the following discussion we will restate some of the
objectives/requirements of the WP7 case study as described in this deliverable and then we will attempt to
show how distributed (reasoning) with distributed data sources is indeed related to them.

2.2.1 Objectives and User Requirements

The main objectives of this case study can be summarized as follows:

1. Creation and maintenance of networked ontologies in the fisheries knowledge community.

2. Exploitation of ontologies within web applications and development of a Fish Stock Depletion Assess-
ment System.

3. The success of a number of case study indicators.

Objective 1 means in practice that users should be able to implement the fisheries ontologies network and
map them to exploit and use the Fisheries electronic resources, taking care of the continuous growth of
the information and knowledge made available made in the domain. For the realization of Objective 2, it is
beyond others expected that mechanisms are provided for static and especially run-time modularization of
networked ontologies. This is very relevant considering the large size of the case study ontologies and the
high level performance expected from applications using the ontologies.

On the other hand, a major requirement for ontology engineers for the WP7 case study has to do with ontology
reuse, reengineering and integration. New ontologies may be created on the basis of existing ones, either by
transforming the conceptual model of an existing and implemented ontology into a new one (reengineering)
or by including the existing ontology into the new one (integration).

Perhaps the most important goal for ontology engineers is, however, modularization. Especially in case of
large ontologies, it is important that facilities be provided to support users in defining and selecting "frag-
ments" of ontologies, which we call modules. Common reasons for these facilities are: to improve efficiency
(by selecting only the part of the ontology most frequently used), sharing editorial duties, visualization pur-
poses and user rights. In this direction, mechanisms should be in place to allow ontology engineers to create
(at least) modules by language, by code, by topic and for editorial duties.

Indeed, in Deliverable 7.2.2 "Revised/Enhanced Fisheries Ontologies" it is stated that one of the lessons
learned was that if efficiency is an issue, modularization is required. That means that the user should be in
the position to select and load only the portion of ontologies that need to accessed, visualized etc. In this
direction, the generated ontologies were produced by the following hierarchies of reference data:

• Land Areas

• Fishing Areas

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 19 of 93

• Biological Entities

• Fisheries Commodities

• Vessel Types and Size

• Gear Types

This particular choice is inextricably related to the idea of modularization, as it results in the creation of a
number of ontologies describing disjoint domains. Indeed, the whole idea of modularization is based on the
ability to define a number of local modules, which can then be composed under some special operators to
generate the target ontology. In case the domain are disjoints, we can gain some concrete benefits that will
be described in the next subsection. Needless to say, as also stated at the beginning of the chapter, this
is not the only possibility. For instance, in case the sub-ontologies offer different perspectives of the same
concepts, then they refer to the same domain and in that case the mappings need to show how concepts and
instances described in one local ontology are related to other concepts and instances described in a different
local ontology. In Chapter 3, this distinction is better illustrated through an overview of the state of the art,
where different kinds of relationships between the local ontologies are defined, depending by and large on
how the various subdomains are related one to another.

2.2.2 Reasoning over Distributed Networked Ontologies in the Context of WP7 Use Case

In the previous subsection we showed how one of the most basic requirements of the fisheries ontology use
case has to do with modularization and how it can increase efficiency, while at the same time we briefly
summarized the local reference ontologies out of which the revised/enhanced fisheries ontology comprises.
We will next argue that a distributed reasoning process over distributed data sources can indeed achieve
these goals. Chapter 5 will then discuss an approach that is well-fitted in such a setting, providing all the
necessary technical details.

An environment of distributed ontologies (schemata, TBoxes) and data sources (instances, TBoxes) can
indeed be proved very helpful in the case of modularization, especially in the fisheries ontology case study,
where the various local ontologies cover disjoint domains. Each of these modules can reside on a different
node (physically or logically) and then a set of relationships between the nodes can show how these local
ontologies are connected/related to each other. In contrast to a centralized setting, where all ontologies would
reside on the same node, extracting thus a very heavy toll on system scalability and reducing performance,
in the case of decentralized architectures, the generated systems are far more scalable, flexible and the
complexity can be better handled.

More specifically, modularization can lead to the following benefits:

• Scalability for querying data and reasoning on ontologies, as stated in the Introduction.

• Scalability for development, evolution and maintenance of the ontology modules.

• As far as the design phase is concerned, the previous point means better complexity management,
while the usage phase is drastically facilitated, as understandability is significantly increased.

• Re-use. This case is evidently the same as with modular software and it has been one of the strongest
motivations behind the development of modular systems (with the other one being scalability).

Moreover, the domain-disjointness is, in fact, a very convenient feature of our system, when it comes to
physical (networking) distribution. Indeed, the fact that the different local ontologies cover non-overlapping
aspects practically means that placing each module on a different node won’t produce any sort of conflicts,
which usually arise in settings of overlapping domains. For instance, having two different ontologies describ-
ing the same concepts can potentially lead to inconveniences if we place the modules on different nodes,

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 20 of 93 NeOn Integrated Project EU-IST-027595

since answering a query would require the different nodes to cooperate in some way to produce the desired
answer and that could possibly be facilitated by placing the ontologies together. Of course, one can argue
that this is not entirely correct even in our case. For example, if two modules are expected to appear together
in a very high percentage of the posed queries, then it makes sense if they both appear on the same node,
instead of being separate. Nevertheless, in principle disjoint domains can avoid many of these problems,
when it comes to networking.

The second dimension of distribution, orthogonal to the ontologies axis, is the reasoning axis, as was graph-
ically depicted in the Introduction, Figure 1.1. In the WP7 case study, distributed reasoning can drastically
contribute to achieve the desired goals, and especially efficiency/performance. A centralized inference pro-
cess would require the integration of the different components needed for query answering, canceling thus
partially the benefits of a distributed architecture. In order to fully exploit the benefits acquired from a de-
centralized architecture, we must also be in the position to apply some distributed reasoning process, that
will take into consideration the ontology/data distribution and will avoid -to the biggest possible degree- to
integrate the content residing on distinct nodes.

So far, we only described in practical terms how distributed reasoning with distributed ontologies and data
can be very helpful in the use case scenario of WP7. In Chapter 5, a suitable approach will be discussed
along with all formalisms and technical details.

2.3 The Pharma Case Study

As mentioned in Deliverable 8.3.1 in the context of the NeOn Pharmaceutical case studies, the use of elec-
tronic invoices for commercial transactions has grown exponentially. This results in large heterogeneity of
the represented invoice information, which is further aggravated by the lack of invoice standards among the
main players of the sector. To overcome this situation, finding mappings between networked ontologies and
reasoning over distributed networked ontologies provide a real solution allowing one i) to automate invoice
exchange between business peers, and ii) to ensure consistency of exchanged invoice data.

More concretely, consider two Pharmaceutical Reference ontologies Digitalis and BOTPlus which gather the
knowledge represented in the schema of respective databases. Assume that these ontologies are located in
different nodes. A system supporting networked ontologies with the features described above should provide
the following functions:

• Adapting the ontologies Digitalis and BOTPlus in accordance with the networked ontology framework;

• Detecting automatically or semi-automatically mappings between ontologies;

• Checking consistency of ontologies with mappings;

• Identifying correspondences which are responsible for an inconsistency if any.

In such a scenario, it would be desired that checking global consistency is distributed, i.e. each node is
associated with a local reasoner that is able to answer a query about the consistency of the ontologies
located in this node with respect to the mappings.

Such a solution can be provided by the Integrated Distributed Description Logics (IDDLs) formalism, which
will be presented in more detail in Chapter 6.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 21 of 93

Chapter 3

State of the Art in Reasoning with
Distributed Data - Distributed Reasoning

3.1 Introduction

Distribution both in reasoning and ontologies is a necessary pillar for the realization of the semantic web, as
explained in the motivation section 1.1 of Chapter 1. Distributed Reasoning, in particular, is a relatively new
area of research in the field of Description Logics and has not reached yet a point of maturity. Nevertheless,
a number of approaches stand out as important results and in this chapter we will attempt an overview of the
state of the art, providing at the same time a brief comparison along the dimensions that were introduced in
the section 1.3 of Chapter 1.

The current chapter is briefly organized as follows:

• Section 2. presents the Distributed Description Logics (DDLs). DDLs suppose the existence of a
number of local ontologies, each of them adopting its unique perspective, and then define bridge rules
that show how the various ontologies are related one to another. A distributed extension of the classic
tableau algorithm is available for these logics.

• Section 3. deals with the E-Connection approach. E-Connections also consider a number of local on-
tologies, but instead of just defining correspondences between them, it allows for link constructors, that
act as super-roles, between the different ontologies. A combined tableau can be used for reasoning.

• Section 4. describes the Distributed First Order Logics. This formalism provides a common frame-
work for both DDLs and E-Connections and though no general distributed process is available for this
formalism, we consider that it fits greatly to this report.

• Section 5. looks into Package-based Description Logics (P-DLs). This formalism deals with some
problems of the DDLs and E-Connections and provides a collaborative environment for the construc-
tion, sharing and usage of ontologies, through an importing mechanism. A distributed message-based
inference procedure can be used for reasoning.

• Section 6. examines the approach proposed at the SomeWhere system. This approach considers a
peer-to-peer setting, where every local ontology is simple, in the sense that it can be described in the
full propositional fragment of the Description Logics. It then presents a decentralized consequence
finding algorithm for query answering.

• Section 7. firstly describes the extension of OWL with DL-safe mappings and then investigates how
it can be applied to a peer-to-peer setting. Though the reasoning process integrates the relevant
data and is thus not distributed, it is relevant in the sense that it integrates the part of the distributed
ontologies that is relevant to query answering.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 22 of 93 NeOn Integrated Project EU-IST-027595

• Section 8. summarizes the results.

In order to structure the report in a uniform and comprehensible manner, every section is organized in a very
similar way. A motivation part discusses the problems that are addressed by the approach under considera-
tion, then a formalism part presents (briefly) the syntax and semantics and finally a reasoning part describes
procedures that are used for reasoning under this formalism.

3.1.1 Related Work and Scope of the Chapter

Borgida and Serafini [BS03] propose an extension of classic Description Logics with additional directional bi-
nary relations describing the correspondences between the ontology domains, in what they name Distributed
Description Logics (DDLs). Serafini and Tamilin propose and implement at [ST05] a distributed tableau algo-
rithm for this formalism for distributed TBoxes under the restriction that no cyclical bridge rule dependencies
exist, while [SBT05] takes care of local inconsistencies by introducing a special interpretation, called a hole.
Ghidini et al. describe at [GST07] an extension of the bridge rules between roles and define a formalism
allowing for heterogeneous mappings. Extending the syntax and semantics of OWL to allow for the repre-
sentation of contextual ontologies has resulted in the development of the language C-OWL [BGvH+03]. An
implementation of modular ontologies with the DDLs formalism has been suggested by Stuckenschmidt at
[Stu06].

Another direction in a similar spirit has been followed using E-Connections. The general formalism has been
introduced at [KLWZ04] and provides fundamental theoretical results on whether decidability is preserved
when connecting decidable abstract description systems. Based on this theory, Grau et al. propose an
extension of OWL that integrates a simplified form of the E-Connections formalism and they provide a com-
bined tableau for the SHIF(D) ontologies without ABoxes [GPS04b]. Practical tableau algorithms for very
expressive description logics, namely, SHIQ, SHIO, SHOQ, are extensively discussed at [GPS04a].

Integrated Distributed Description Logics (IDDLs) [Zim07] is another distributed approach, where the use
of an equalizing function maps local domains to a global domain and gives the semantics an integrating
character. Reasoning in a network of ontologies connected through IDDLs based on the notion of local
configurations is presented at [ZD08].

Contrary to the linking/mapping approach followed by the approaches mentioned above, Bao et al. suggest
an importing approach called Package-Based Description Logics (PDLs) [BCH06b] which allows an ontology
to make direct references to terms defined in other ontologies and relaxes the domain disjointness condition
which exists explicitly or implicitly in DDLs and E-Connections. A distributed tableau algorithm for ALC
that allows importing of concepts between packages using an asynchronous message passing protocol is
described at [BCH06d].

Apart from the above approaches that constitute the main pillar of distributed reasoning in DLs, other for-
malisms have been proposed in the bibliography. The work of Haase and Wang at [HW07] describes a
decentralized peer-to-peer infrastructure for query answering over distributed ontologies, called KAONp2p,
which is based on the notion of DL-safe mappings [HM05]. This approach does not present a really dis-
tributed paradigm, but takes into consideration only the relevant information in order to integrate only this
part of the ontologies along with the mappings that are relevant to query answering. For a peer-to-peer
setting of simple ontologies expressed in the propositional fragment of description logics, a decentralized
message-based consequence finding algorithm has been suggested for query answering by Adjiman et al.
[ACG+06]. This algorithm works by using propositional encodings of both the local ontologies and the query
and by producing its rewritings. Finally, Schlicht et al. [SS08b] addresses the problem of scalable reasoning
in ALC by proposing a novel parallel algorithm that decides satisfiability of terminologies and which is based
on applying resolution to DLs.

It goes without saying, the current chapter will not even attempt to give an overview of all techniques that
have been proposed for distributed reasoning in description logics, as that would be well beyond its scope.
Instead, we have chosen to concentrate on a number of approaches that are well studied in the literature
and/or come with a system implementation, leaving aside other potentially very promising methods. The main

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 23 of 93

motivation behind this is not so much about presenting all formalisms, but rather about attempting to show
how the different formalisms approach the problem of distributed reasoning and in what ways the are the
same or they differ. In other words, ultimate goal is the demonstration of the challenges that can arise when
building distributed systems and how each of these approaches tackles some of these challenges. Moreover,
for the approaches that are discussed in the context of the current chapter we have chosen not to go into
details about their formalisms, reasoning processes, applications etc., but rather to focus on a more restricted
part that is enough to demonstrate the main ideas behind the method. This is in accordance with what we
consider the general objectives of any state of the art survey, namely summarization and comparison.

3.2 Distributed Description Logics

3.2.1 Motivation

The semantic web vision involves, as already mentioned, a number of distributed ontologies, each providing
its unique view of the world. In order to be able to exploit the distributed knowledge, one must first establish
some kind of relationships between the ontologies in the distinct nodes, so that the reasoning algorithm can
then be able to combine different pieces of information residing on different nodes. For example, one infor-
mation source alone might not contain all the relevant information, but the established semantic relationships
could help us use knowledge from other sources, in order to get the complete answer.

The relationships/mappings between the different distributed sources are very interesting to investigate. In
the general case, one cannot make many assumptions about their form. For example, when it comes to
relationships between individuals, these relationships do not need to have an one-to-one character, as it
is often the case that an individual belonging to the domain of one ontology can be mapped to a number
of individuals belonging to the domain of a remote ontology. For a similar reason, injections or surjections
cannot be adequate to capture the possible correspondences between individuals in more general cases.
Also, one usually has to express further constraints about these relationships, as for example that an instance
of domain A can be corresponded to exactly two instances from domain B. Another very important feature is
that the established correspondences between the two distributed ontologies, should not necessarily be the
same in the two directions. Instead, one needs in practice a pair of correspondences, one in each direction
of the relation.

Getting inspiration from the characteristics of relationships between distributed ontologies, Borgida and Ser-
afini [BS03] propose an extension of classic Description Logics with additional directional binary relations
describing the correspondences between the ontology domains, in what they name Distributed Description
Logics (DDLs). The novelty of their approach resides in the fact that using bridge rules they can implicitly
constrain the relationships between the different domains. Additionally, the directional bridge rules respect
the potentially different point of views that each ontology can exhibit.

3.2.2 Formalism

Consider a collection of description logics DLi over a non-empty set of indices I . By Ti we denote the TBox
of the i ontology expressed in DLi, while the distributed TBox T is defined as

⋃
i∈ITi, that is the union of

the local TBoxes. Every description of the i-th ontology is labeled with the prefix i : to make it clear which
ontology it belongs to. For example, the concept E described in the ontology i will be referred to as i : E,
whereas the axiom D v E in ontology j will be written as j : D v E.

The definition of bridge rules is then as follows:

Definition 1 A bridge rule Bij from i to j is any expression of the following two forms:

• i : A w−→ j : B (onto - bridge rule)

• i : C v−→ j : D (into - bridge rule)

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 24 of 93 NeOn Integrated Project EU-IST-027595

, where A,C and B,D are concepts of description logics DLi and DLj respectively.

What is very interesting is that bridge rules do not try to capture the meaning of the ontology mappings
from an objective point of view. That would be the case for example if we tried to map all local ontologies
into a global ontology. Instead, the bridge rule represents a directional relation which is considered from
the subjective point of view of each ontology and thus the bridge rule Bji is not necessarily the inverse of
the bridge rule Bij , in fact it does not even have to exist. This central idea reflects according to [BS03] the
structure of the semantic web, where it is not realistic to consider global point of views for all participating
ontologies, but rather subjective perceptions of the semantic relations.

So, the onto - bridge rule i : A w−→ j : B states that from the point of view of the j− th ontology the concept

A in ontology i is less general than the concept B in ontology j. Similarly, the bridge rule i : C w−→ j : C
states that from the point of view of the j − th ontology the concept C in ontology i is more general than
the concept D in ontology j. The "more general" and "less general" concepts imply some kind of relation
between the two concepts that maps instances of the domain of ontology i to instances of the domain of
ontology j, as seen from j′s perspective. This purpose is served by the domain relations rij :

Definition 2 A domain relation rij from the domain ∆i of ontology i to the domain ∆j of ontology j is a
subset of the cartesian product ∆i x ∆j .

Obviously, its purpose is to map instances of the domain ∆i to instances of the domain ∆j , as seen from
the perspective of j. That means that when defining the interpretation of a distributed TBox the classical
interpretation structure < ∆I ,.I > must be extended, so that it also takes into account the domain relations
between the distributed ontologies. More concretely:

Definition 3 An interpretation J of a distributed TBox consists of local interpretations for the local TBoxes
Ti on the local domains ∆i and a collection of domain relations rij between the different local domains. J
satisfies the elements of a distributed T-Box T= < {Ti}i∈I , B > according to the following clauses, where i,j
∈ I:

• J |= i : A v−→ j : B, if rij(AIi) ⊆ BIj (Satisfaction of onto - bridge rule)

• J |= i : A w−→ j : B, if rij(AIi) ⊇ BIj (Satisfaction of into - bridge rule)

• J |= i : A v B, if Ii |= A v B (Satisfaction of local subsumptions)

• J |= Ti, if Ii |= Ti (Satisfaction of local T-Boxes)

• J |= T , if for every i ∈ I, J |= Ti, and J satisfies every bridge rule in the union of the sets in B.

Furthermore, T |= i : C v D if, for every distributed interpretation J , J |= T =⇒ J |= i : C v D.

At this point we mention that theDDLs formalism is additionally equipped with mappings between individuals
belonging to the different ontologies. These correspondences can have the form of a mapping from one
instance of ontology A to either exactly one instance of ontology B or multiple instances of ontology B. The
reason we chose not to go into details with regard to these mappings is that distributed reasoning under this
formalism has been developed only for knowledge bases with only TBoxes, as we shall discuss later.

The definitions of the DDLs have some very interesting implications. Among them, we mainly focus on the
simple and generalized subsumption propagation properties, since they provide the theoretical foundations
for the distributed reasoning process. More concretely:

• The simple subsumption propagation allows for the propagation of subsumption axioms across ontolo-

gies using a combination of onto- and into-bridge rules. For example, if Bij contains i : A w−→ j : G

and i : B v−→ j : H , then: J |= i : A v B =⇒ T |= j : G v H .

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 25 of 93

• The generalized subsumption propagation is, as its name suggests, a generalization of the simple
propagation rule and takes into account the case where multiple subsumption rules are available.

So, if Bij contains i : A w−→ j : G and i : Bk
v−→ j : Hk for 1 ≤ k ≤ n and n ≥ 0, then:

J |= i : A v
⊔n
k=1Bk =⇒ T |= j : G v

⊔n
k=1Hk.

In the next section we will see how this two properties constitute the main pattern in the distributed reasoning
procedure.

3.2.3 Reasoning

Traditionally, the basic reasoning mechanism provided by classic DL reasoners checked the subsumption of
concepts, since it can be shown that all other TBox inferences can be reduced to subsumption verification.
The same can be said for distributed TBoxes, with the difference that besides the local reasoning tasks,
which can be implemented by a reasoner residing on a local ontology, one must also consider the various
interactions between the distributed ontologies because of the semantic mappings between them. So, apart
from the local reasoning task, a distributed reasoner has to take advantage of the semantic relations between
the different ontologies, so as to infer "hidden" subsumptions.

Using as basic reasoning pattern the property of generalized subsumption propagation, Serafini and Tamilin
propose at [ST05] a distributed tableau algorithm for determining whether J |= i : A v B. Their approach
is based on the contextual reasoning paradigm. Contrary to other approaches that try to reduce the dis-
tributed reasoning problem into a reasoning in a global ontology that encodes both the local TBoxes and
the mappings, this approach has the advantage of checking concept satisfiability by combining local tableau
procedures that are executed inside the local ontologies.

The following definition provides us with the same tool for the distributed reasoning in DDLs:

Definition 4 Given the ontologies i and j and the set of bridge rules Bij , the bridge rule operator Bij(·)
takes as input the T-Box Ti of ontology i and produces a TBox of ontology j as follows:

Bij(Ti) =

G v
⊔n

k=1 Hk

T1 |= A v
⊔n

k=1 Bk,

i : A
w−→ j : G ∈ Bij ,

i : Bk
v−→ j : Hk ∈ Bij ,

for 1 ≤ k ≤ n and n ≥ 0

n=0 denotes the bottom concept⊥. The intuition behind the introduction of the bridge operator is the isolation
the non-local part of the distributed inference process. Indeed, the theorem that follows next shows that for a
certain family of distributed TBoxes all non-local inferences can be provided by the computation of the bridge
operator:

Theorem 1 Suppose Tij is the distributed T-Box < Ti, Tj , Bij >, then:
Tij |= j : X v Y ⇐⇒ Tj ∪Bij(Ti) |= X v Y.

What the previous theorem actually states is that the decision whether the subsumption X v Y holds in
ontology j can be correctly and completely reduced to checking whether the subsumption axiom holds int
the local TBox Tj augmented by the T-Box of the bridge operator. So, what is needed is an effective procedure
to compute the outcome of the bridge operator.

Indeed, the reasoning procedure proposed at [ST05] answers this problem for a particular category of dis-
tributed TBoxes, called acyclic TBoxes. Namely, a distributed TBox is acyclic if the set of indexes is a partial
order (I , <), such that i < j, if and only if Bij 6= ∅. The algorithm restricts to this case and not to the general
one, as in the former case the interactions between the ontology domains can be represented as a chain,
along which subsumption axioms are propagated. That is not the case for general-form distributed TBoxes,
where the semantic links can be much more complicated.

The main task of the algorithm is to check whether T |= i : A v B, by reducing the subsumption problem
to the satisfiability problem of the complex concept Au 6 B. To that purpose every local ontology belonging

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 26 of 93 NeOn Integrated Project EU-IST-027595

to the network of the distributed ontologies has a local distributed tableau procedure that tries to build a
representation of the model for the concept and consists of two procedures:

• An exclusively local procedure that is in charge of the local reasoning process and makes use of the
standard Description Logics expansion rules.

• A distributed tableau procedure that uses the local reasoning procedure plus a set of expansion bridge
rules, so as to use additional information from the set of bridge rules and infer new subsumption
relations holding in the local ontology.

The proposed algorithm certainly has a number of limitations, as for example the existence of acyclic dis-
tributed TBoxes with no individuals, but on the other hand is quite simple to implement. Indeed, an imple-
mentation of the previous procedures dealing with the problem of distributed reasoning has been proposed
in what is known as Distributed Reasoning Architecture for a Galaxy of Ontologies (DRAGO). This system
combines different reasoning procedures for mapped ontologies and directly uses ontologies and links be-
tween them published on the web, without requiring a tight interaction with central repositories or between
the local ontologies and a global one. Despite its simplicity, its design philosophy constitutes a true paradigm
of a distributed tableau procedure.

3.3 E-Connections

3.3.1 Motivation

Despite their ability to combine different loosely coupled federated data sources, DDLs are rather restricted,
since they allow only one type of domain relations. Indeed, bridge rules can be thought of as binary relations
between the two domains; under that approach relations of arbitrary arity n are not possible. Moreover,
instead of one domain relation, as in the DDLs, we can now have as many links between the data sources
as we need. These links can be conveniently be thought of as "super-roles", that allow to define relationships
between disjoint domains, as opposed to the classic case in Description Logics, where roles are binary
relations over the one and unique domain. In this section, we define E-Connections in the context of abstract
description systems and we present a number of results with regard to them, based on the work at [KLWZ04].

The main idea is that given n systems defined in terms of abstract description systems (ADSs) with dis-
joint interpretation domains, we want to establish n-ary relations between them, in such a way that if the n
components are decidable, then the resulting connected system also retains the decidability.

We begin by introducing ADSs and E-Connections among them.

3.3.2 Formalism

Abstract Description Systems

Abstract description systems came as a result of the effort to combine different logical formalisms into a
single logical formalism. Examples of the different formalisms include description logics, logics of topological
spaces (e.g. the modal logic S4 extended with the universal modality), logics of metric spaces that can offer
not only qualitative but also quantitative information (e.g. the family MS), and propositional temporal logics.
That actually suggests that the abstract description system formalism is a very expressive formalism, able to
handle quite different kinds of logics, and not restricted just to the DLs field.

The syntax is provided by the abstract description language, which determines the set of terms and asser-
tions. Here we only give the trimmed-down version of ADSs that doesn’t take into consideration A-Boxes.
We begin by defining abstract description languages, which provide the building stones for writing terms, and
abstract description models, that provide the terms with semantics.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 27 of 93

Definition 5 An abstract description language (ADL) L is described by a countably infinite set V of set
variables and a countable set F of function symbols f of any arity mf , such that ¬, ∧ /∈ F . The terms of tj
of L are built in the following way:
tj ::= x | ¬t1 | t1 ∧ t2 | f(t1, ..., tmf

), where x ∈ V and f ∈ F . The term assertions of L are of the form
t1 v t2.

An abstract description model (ADM) for an ADL L = (V,F) is a structure of the form M = 〈W, VM =
(xM)x∈V , FM = (fM)f∈F 〉,where W is a non-empty set, xM ⊆ W and each fM is a function mapping
mf -tuples 〈X1, ..., Xnf

〉 of subsets ofW to a subset ofW . The value tM ⊆W of anL-term t in M is defined
inductively by taking: (¬t)M = W − tM, (t1 ∧ t2)M = tM1 ∩ tM2 , and (f(t1, ..., tmf

))M = fM(tM1 , ..., t
M
mf

).

Also, M |= t1 v t2 iff tM1 ⊆ tM2 (truth-relation for a term-assertion) and in this case we say that the assertion
t1 v t2 is satisfied in M. For sets Γ of assertions, we write M |= Γ if M |= ϕ for all ϕ ∈ Γ.

We now define an ADS as a pair of an ADL and a class of ADMs.

Definition 6 An abstract description system is a pair (L,M), where L is an ADL andM is a class of ADMs
for L that is closed under the following operation: if M = 〈W,VM,FM〉 is inM and VM′

= (xM′
)x∈V is a

new assignment of set variables in W then M′ = 〈W,VM′
,FM〉 ∈ M.

What the closure condition suggests is that the set variables can be interpreted as arbitrary sets of the
interpretation domain, so they are treated as variables in any ADS, while the interpretation of the function
symbols remains the same. That is a property that all DLs comply with.

The main reasoning task for an ADS is the satisfiability problem for finite sets of term assertions.

Definition 7 Let S = (L,M) be an ADS. A finite set Γ of term assertions is called satisfiable in S if there
exists an ADM M ∈M such that M |= Γ.

So far, we have presented an overview of abstract description systems. It is not hard to see how many
description logics formalisms can be reduced to their corresponding ADS. Let’s think for example of the
description language ALC which is comprised of concept names A1, A2, ..., role names R1, R2, ..., the
Boolean operators ¬ and ∧, and the existential and the universal restrictions ∃ and ∀ respectively. Then set
variables would correspond to concept names, function symbols to concept constructors and term assertions
to general concept inclusion axioms. The exact transformation is not presented here for brevity reasons, but
can be found in [KLWZ04]. Analogous transformations are possible for more expressive DLs, like for example
the SHIQ language, and even for other family of formalisms, as for example propositional dynamic logics.

E-Connections in Abstract Description Systems

So far, we have provided the framework of ADSs which enables us to translate very different formalisms into
the fore mentioned abstract formalisms. On the other hand, our main interest resides in the ability to establish
general form link relations between the components of the system. This is accomplished by E-Connections,
which can be viewed as the combination of the system components.

The E-Connection CE(S1, ..., Sn) of n ADSs S1, ..., Sn, where Si = (Li,Mi) with 1 ≤ i ≤ n, contains a set
of terms and a set of assertions both partitioned into n sets, and is interpreted by a class of models.

We define the i-terms inductively: 1) every set variable of Li is an i-term, 2) the set of i-terms is closed
under ¬, ∧ and the function symbols of Li, and 3) if (t1, ..., ti−1, ti+1, ..., tn) is a sequence of k-terms tk for
k 6= i, then
〈Ej〉i(t1, ..., ti−1, ti+1, ..., tn) is an i-term, for every j ∈ J .

The set of terms of CE(S1, ..., Sn) is the union of the set of the i-terms, for 1 ≤ i ≤ n. The term assertions
of CE(S1, ..., Sn) are of the form t1 v t2, where both t1 and t2 are i-terms, for 1 ≤ i ≤ n.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 28 of 93 NeOn Integrated Project EU-IST-027595

The semantics of CE(S1, ..., Sn) is given through the structureM = 〈(Mi)i≤n, EM = (EM
j)j∈J〉,where

Mi ∈ Mi for 1 ≤ i ≤ n and EM
j ⊆ W1 × · · · ×Wn for each j ∈ J . This structure is called a model

for CE(S1, ..., Sn). The extension tM ⊆ Wi of an i-term t is defined by induction. For set variables X of
Li we put XM = XMi , while the inductive steps for the Booleans and function symbols are the same as in
Definition 5. Moreover, if ti = (t1, ..., ti−1, ti+1, ..., tn) is a sequence of j-terms tj , with 1 ≤ j ≤ n ∧ j 6= i,
then: (〈Ej〉i(ti))M = x ∈Wi | ∃l 6=ixl ∈ tMl (x1, ..., xi−1, x, xi+1, ..., xn) ∈ EM

j .

The satisfiability of a set of assertions is defined as in previous section. The following theorem is the funda-
mental transfer result proved by Kutz, Lutz, Wolter and Zakharyaschev:

Theorem 2 Let CE(S1, ..., Sn) be an E-Connection of ADSs S1, ..., Sn. If the satisfiability problem for each
of S1, ..., Sn is decidable, then it is decidable for CE(S1, ..., Sn) as well.

So, the general framework of E-Connections defined in terms of abstract description systems preserves the
satisfiability of the system components and moreover, it can be proved that an upper complexity bound for the
satisfiability problem for CE(S1, ..., Sn) is one exponential higher that the time complexity of the original de-
cision procedures for S1, ..., Sn, while the combined decision procedure is non-deterministic. Nevertheless,
it is not yet known whether this complexity result is optimal.

The E-Connections mentioned so far are basic in the sense that they do not allow for more complex opera-
tions on link relations. For this purpose, a variety of extensions of basic E-Connections has been defined and
investigated in [KLWZ04]. These results are beyond the scope of the current work and will not be mentioned
here.

3.3.3 Reasoning

Grau, Parsia and Sirin explore at [GPS04b] a variant form of E-Connections among distributed ontologies
expressed in SHIF (D) and propose an extension of the ordinary tableau calculus for reasoning upon the
connected system.

Let D1, D2, ..., Dn n disjoint distributed domains and Li, 1 ≤ i ≤ n, propositionally closed Description
Logics (extensions of ALC) that allow us to talk about the corresponding domain Di, that can be expressed
as abstract description systems and are decidable. As was the case before, we want to establish connections
between the system components Si, so as to express possible relations between the different domains.
However, instead of using n-ary links to describe these relations, we now use binary links, each describing a
relation between two different domains. So, we define countable and disjoint sets εij , with i, j = 1, ..., n, of
link names and in that case a link property E ∈ εij can be seen as a relation associating elements from the
domain Di to the domain Dj , as opposed to relations in Description Logics, which associate elements of the
same domain.

The semantics of E-Connections defined as above, is given by a combined interpretation I =
({Ii}ni=1, {εIij}ni,j=1,i 6=j) of the local domains on the one hand and of the binary relations on the other. Addi-
tionally, we can define the two concept constructors ∃E.C and ∀E.C, defined on the link property E ∈ εij ,
with the following semantics:

• (∃E.C)I = {x ∈Wi | ∃y ∈Wj , (x, y) ∈ EI , y ∈ CI }

• (∀E.C)I = {x ∈Wi | ∀y ∈Wj , if (x, y) ∈ EI then y ∈ CI }

The combined tableau method that was mentioned in the beginning of this section is defined for the combined
logic CE(SHIF (D)), which is the SHIF (D) family of DLs (on which the ontology language OWL-Lite is
based), extended with the link properties (defined earlier) and containing only T-Box assertions. Essentially,
the combined logic consists of n T-Boxes Ki, i = 1, ..., n, where each T-Box contains inclusion axioms of
the form C v D, where C and D are i-concepts. The reasoning algorithm works on a finite combined
completion, which is a forest of SHIF (D) completion trees, and it tries to construct a model for an input
concept in the combined T-Box. If it succeeds it returns satisfiable, otherwise unsatisfiable.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 29 of 93

The algorithm generates n kinds of nodes and n different kinds of trees, namely i-nodes and i-trees respec-
tively. An i-tree is expanded with the expansion rules, plus the additional rules, and can contain i-nodes and
j-nodes. Its root must always be an i-node, whereas j-nodes can only be leafs of the tree. If the algorithm
is building an i-tree and at some point during the expansion a j-node is created, then the algorithm goes on
with the expansion of the i-tree and only after the i-tree is completed does the algorithm proceed with the
expansion of the j-node. A j-node g in an i-tree contains a clash iff the corresponding j-tree contains a clash
when expanded. Otherwise, it is satisfiable and g is marked with the label "visited".

The three expansion rules added by the algorithm are:

• ∃link Rule : If ∃E.C ∈ Li(x) (E ∈ εij), x is not blocked and has no E-successor y with L(x, y) =
{E}, and {C} ∈ Lj(y), then create a new E-successor (j-node) y of x with Lj(y) = {C}. A new j-tree is
created with root y labeled with Lj(y). The j-tree won’t be expanded until no more rules apply in the
i-tree.

• ∀link Rule : If ∀E.C ∈ Li(x) (E ∈ εij), x is not blocked and there exists an E-successor y of x, such
that {C} /∈ Lj(y), then Lj(y) = Lj(y) ∪ {C}.

• CE Rule: If CKi /∈ Li(x), then Li(x)←Li(x) ∪ {CKi}, where
CKi = u

Cj
ivD

j
i∈Ki

(¬Cji tD
j
i).

The first rules are the analogous to the expansion rules for qualified existential and universal qualification,
where now the binary relation in the quantification associates different domains, so we have to distinguish
between i-nodes and j-nodes. The third rule ensures that every i-node contains the concept CKi . Indeed,
we cannot internalize the combined T-Box into a single concept and thus cannot reason with respect to an
empty T-Box. In that case, the third rule makes sure that the i-node will satisfy the i component Ki of the
combined T-Box.

Given as an input an i-concept X and a combined T-Box, the algorithm initially creates an i-tree with a single
i-node xi, labeled Li(xi) = X , and a j-tree for each j = 1, ..., n, j 6= i, each with a single j-node labeled with
the empty set.

In order to ensure termination, an additional blocking condition has to be added. More specifically, before
starting to expand a j-tree T with root node g, created as a successor of some i-node, the algorithm has to
check whether another i-node x exists in a not yet completed j-tree such that Lj(g) ⊆ Lj(x). Should that
be the case, we say that the node g is blocked by the node x, and the algorithm returns that the j-tree T is
satisfiable. An i-tree tree is complete if either it contains a clash or no more can be applied to its i-nodes and
all its produced j-nodes are "visited". In case, all trees can be expanded through the expansion rules in a
way that each initial tree yields to a complete, non-clash tree, the algorithm returns "satisfiable" for the input
i-concept X. otherwise it returns "unsatisfiable". The work at [GPS04b] proves that this tableau algorithm has
the desirable properties of tableau algorithms in DLs, namely that 1) it terminates, and 2) there is a clash-free
and complete combined completion iff the concept is satisfiable with respect to the knowledge base.

3.4 Distributed Terminological Knowledge under the Distributed First Order
Logic Framework

Clearly, in both the DDLs and the E-Connections approach, the resulting system consists of two compo-
nents: a family of terminological knowledge subcomponents described in DLs and a set of rules/connections
that represent mappings between the subcomponents. A powerful logical framework that allows for the
encoding of these approaches (as well as of others) is Distributed First Order Logic (DFOL). This logical for-
malism generally enables the representation of first order theories along with a set of axioms describing the
relations between these theories. Based on this formalism, Serafini et. al. investigate at [SSW05] how DFOL
can be used to encode distributed terminological knowledge. In this section, we provide a rather extended
summary of their results.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 30 of 93 NeOn Integrated Project EU-IST-027595

3.4.1 Formalism

We first consider a set of first order languages with equality {Li} defined over a non-empty set of indexes.
Obviously, each local language Liby the i-th knowledge base. The signature of Li is extended with a new
set of symbols that are used to denote objects that are related to other objects in different ontologies. So,
for each variable and each index j ∈ J with j 6= i two new symbols x→j and xj→ are added. called arrow
variables. Terms and formulas of Li are defined as usual, while quantification on arrow variables is not
permitted. The notation φ(x) is used to denote the formula φ as well as the fact that the free variables of φ
are x = x1, ..., xn.

Definition 8 A set of local models of Li are a set of first order interpretations of Li, on a domain domi which
agree on the interpretation of Lci , the complete fragment of Li.

Two or more models can describe the same part of the world, in which case we say that they semantically
overlap. DFOL explicitly represents semantic overlapping via a domain relation, where a domain relation
from domi to domj is a binary relation rij ⊆ domi× domj . A pair < d, d′ > in rij means that from the point
of view of j, d in domi corresponds to d′ in domj . The two-way correspondences need of course not to be
the same, since each of them describes the correspondences from a subjective point of view, so in general
we have rij 6= rji. Using the notion of domain relations one can define the notion of a model for a set of
local models.

Definition 9 A DFOL model M is a pair < {Mi}, {rij} > where, for each i 6= j ∈ I : Mi is a set of local
models for Li, and rij is a domain relation from domi to domj .

We now extend the classical notion of assignment, so that arrow variables are also taken into consideration.
We note that assigning arrow variables is not always possible, since the domain relation might be such that
there is no consistent way of assigning arrow variables.

Definition 10 Let M = < {Mi}, rij > be a model for {Li}. An assignment a is a family {ai} of partial
functions from the set of variables and arrow variables to domi, such that:

• ai(x) ∈ domi,

• ai(xj→) ∈ rji(aj(x)),

• aj(x) ∈ rij(a)i(x→j)).

An assignment a is admissible for a formula i : φ if ai assigns all the arrow variables occurring in f . WE can
now define the notion of satisfiability in first order logic:

Definition 11 Let M = < {Mi}, {rij} > be model for {Li}, m ∈ Mi, and a an assignment. An i-formula φ
is satisfied by m w.r.t. a, or m |=D φ[a] if

1. a is admissible for i : φ and

2. m |= φ[ai], according to the definition of satisfiability of first order logic.

M |= Γ[a] if for all i : φ ∈ Γ and m ∈Mi, m |=D φ[ai].

From the point of view of DFOL, mappings can in reality be considered as additional constraints that involve
more than one knowledge base and so they restrict the set of DFOL models that can interpret the combined
knowledge base. In the DFOL framework they are defined by introducing a new kind of formula and are
called interpretation constraints: Concretely:

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 31 of 93

Definition 12 An interpretation constraint from i1, ..., in to i with ik 6= i for 1 ≤ k ≤ n is an expression of
the form:

i1 : φ1, ..., in : φn −→ i : φ.

For the satisfiability of interpretation constraints we have:

Definition 13 A model M satisfies the interpretation constraint, in symbolsM |= i1 : φ1, ..., in : φn −→ i : φ
if for any assignment a strictly admissible for {i1 : φ1, ..., in : φn}, if M |= ik : φk[a] for 1 ≤ k ≤ n, then a
can be extended to an assignment a′ admissible for i : φ and such that M |= i : φ[a′].

Depending on where the arrow variable appears (on the left or the right side of the interpretation constraint),
the variable has a different meaning (universal or existential respectively). So:

1. M |= i : P (x→j) −→ j : Q(x) iff
For all d ∈ ‖P‖i and for all d′ ∈ rij(d), d′ ∈ ‖Q‖j .

2. M |= i : P (x) −→ j : Q(xi→) iff
For all d ∈ ‖P‖i there is a d′ ∈ rij(d), s.t. d′ ∈ ‖Q‖j .

3. M |= j : Q(xi→) −→ i : P (x) iff
For all d ∈ ‖Q‖j and for all d′ with d ∈ rij(d′), d′ ∈ ‖P‖i.

4. M |= j : Q(x) −→ i : P (x→j) iff
For all d ∈ ‖Q‖j there is a d′ with d ∈ rij(d′), s.t. d′ ∈ ‖P‖i.

3.4.2 Associating Mapping Languages with the DFOL Formalism

Without entering in more details, we just notice that formalisms for mapping languages are based on four main
parameters: local languages, local semantics used to specify the local knowledge, and mapping languages
and semantics for mappings, used to specify the semantic relations between the local knowledge. From
the previous sections it has been made clear that the local knowledge is encoded in a suitable fragment of
DLs, which means that the local language is a suitable fragment of first order languages. Local semantics
is expressed through the TBox models, which means that local knowledge is associated with a t most one
FOL interpretation. To make this compatible with the DFOL framework, we just need to declare each Li to
be a complete language. This implies that all m ∈Mi have to agree on the interpretation of Li symbols. Let
us now see how the two mapping formalisms, namely DDLs and E-Connections, can be translated in the
DFOL framework.

DDLs

We are interested in the following bridge rules:

1. i : φ v−→ j : ψ.

The corresponding DFOL interpretation constraint is i : φ(x→j) −→ j : ψ(x).

2. i : φ w−→ j : ψ.

The corresponding DFOL interpretation constraint is j : ψ(x) −→ i : φ(x→j)).

3. i : φ
6v−→ j : ψ.

For this bridge rule there is no corresponding DFOL interpretation constraint.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 32 of 93 NeOn Integrated Project EU-IST-027595

E-Connections

In E-Connections, we can have multiple links associating concepts from two subcomponents. To represent
this, we label each arrow variable with the proper link name, so for example instead of just writing x→j we

also specify the link relation by writing x
E→j , where E the name of the link. With this syntactic extension of

DFOL, E-Connections can be translated in DFOL interpretation constraints as follows:

1. φ v ∃E.ψ

The corresponding DFOL interpretation constraint is i : φ(x) −→ j : ψ(xi
E→).

2. φ v ∀E.ψ

The corresponding DFOL interpretation constraint is i : φ(x
E→j) −→ j : ψ(x).

3. φ v≥ nE.ψ

The corresponding DFOL interpretation constraint is i :
∧n
k=1 φ(xk) −→ j :

∧n
k 6=h=1 ψ(xi

E→
k) ∧ xk 6=

xh.

4. φ v≤ nE.ψ

The corresponding DFOL interpretation constraint is i : φ(x)∧
∧n+1
k=1 x = x

E→j
k −→ j :

∨n+1
k=1(ψ(xk) ⊃

∨h6=kxk = xh).

We notice that it is not possible to model Boolean combinations of links, while it is possible to represent
inverse links and link inclusion axioms.

3.5 Package-Based Description Logics

3.5.1 Motivation

The semantic web vision has as an important pillar the existence of collaborative environments for the con-
struction, sharing and usage of ontologies. Indeed, collaboration between several developer groups with
expertise in specific areas, with each developer contributing only a part of the ontology, is highly expected.
Several problems that need to be addressed can arise in such a setting:

1. Local vs. Global Semantics: When integrating the independently developed ontology modules, we
should keep in mind that each module represents a local point of view and is locally consistent. How-
ever, one cannot expect that the different modules also need to be globally consistent, since semantic
conflicts between the different modules might occur. In such cases, additional care should be taken to
manage these inconsistencies, without the need to discard any ontology.

2. Partial Reuse vs. Total Reuse: When building a new ontology, it is often necessary to import just some
part of another ontology and not the whole ontology. It would thus be helpful, if the ontology has a
modular structure and every time only some relevant part of it is being imported, leaving the irrelevant
part outside the importing scope.

3. Organizational Structure vs. Semantic Structure: It is useful to distinguish between two different types
of ontology structures: organizational structure and semantic structure. Organizational structure refers
to the arrangement of the ontology in modules in such a way that they are easy to use. On the other
hand, semantic structure, deals with the relationship between meanings (semantics) of terms in an
ontology.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 33 of 93

4. Knowledge Hiding vs. Knowledge Sharing: In most cases, the provider of the ontology is expected
not to make the entireness of the ontology visible to outside user or developer communities, but it is
rather likely that only some parts of the ontology will be exposed to specified communities. Moreover,
the ontology component usually offers only a limited query interface, while the details of the imple-
mentation are kept hidden from the use. In both cases, knowledge hiding is a required feature of the
ontology modules. Knowledge hiding allows thus for a type of semantic encapsulation, where detailed
information is hidden from view, while a simpler query interface is provided.

Package-based Description Logics provide an interesting framework for achieving the requirements for an
ontology collaborative environment and overcoming the problems described above, as will be shown in the
following sections.

3.5.2 Formalism

Syntax

In PDLs the whole ontology is composed of a set of packages (modules). We have the next definition:

Definition 14 Let O = (S, A) be an ontology, where S the set of terms and A the set of axioms of the ontology.
A package P = (∆S ,∆A) of the ontology O is a fragment of O, where ∆S ⊆ S and ∆A ⊆ A. The set of all
possible packages is denoted as ∆P . A term t ∈ ∆S or an axiom t ∈ ∆A is called a member of P (t ∈ P)
and P is called the home package of t (HP(t) = P).

A package P can also use terms defined in another package Q, called foreign terms in P. In that case we say
that P imports Q and write P 7−→ Q. The importing closure I 7−→(P) of a package P contains all packages
that are either directly or indirectly imported into P. A package-based Description Logic ontology, or a PDL
ontology, consists of multiple packages, each of them expressed in DL.

As mentioned in the previous section, it is usually useful to impose a hierarchical organizational structure
over the PDL ontology, which coexists with the semantic structure and doesn’t be the same as it. More
specifically, we have:

Definition 15 A package P1 can be nested in one and only one other package P2. In that case we write
P1 ∈N P2 and say that P1 is the subpackage of P2 and P2 is the superpackage of P1. The collection
of all package nesting relations in an ontology constitutes the organizational hierarchy of the ontology. By
P1 ∈∗N P2 we denote the transitive closure of the nesting relationship.

Semantics

For each package in a PDL, we can define the local interpretation of the package in a way similar to
the interpretation for a description logic ontology. Since a local interpretation interprets everything in the
local domain, there semantics of the foreign terms are not taken into account in the local domain. For the
same reason, the same term can be interpreted differently in two packages and they do not need to be in
accordance one with another.

Contrary to the local interpretation, a global interpretation is the interpretation of all packages of which the
ontology consists. It interprets the ontology from the global point of view of all packages and not from the
local point of view of a single package.Given that the global interpretation tries to interpret the ontology from
the global point of view of all its packages, it is evident that a PDL ontology is globally consistent, iff a global
interpretation exists. While it perfectly makes sense to demand that a local interpretation for each package
exists, the same doesn’t hold for the stronger requirement of global interpretation of all packages. Indeed, if
local consistency cannot be guaranteed, integrity of any information that is based on that package cannot be
guaranteed. On the other hand, taking into consideration that the different modules may be independently

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 34 of 93 NeOn Integrated Project EU-IST-027595

developed from developer groups with different perspectives and interests, it could be that global consistency
does not exist.

Finally, a distributed interpretation witnessed by a package P represents the semantics of axioms in P and
its importing closure. It is different from a local interpretation, in that a local interpretation provides an
interpretation only for the local package, handling foreign terms as any local terms. It is also different from a
global interpretation, since the latter is a global model for the whole ontology, whereas the former is a model
for only some packages in the ontology.

Definition 16 For a package-based ontology < {Pi}, {Pi
t→ Pj}i 6=j >, a distributed interpretation is a pair

M = < {Ii}, {rtij}i 6=j >, where Ii = < ∆i, (·)i > is the local interpretation of package Pi, rtij ⊆ ∆i ×∆j is

the interpretation for the importing relation Pi
t→ Pj . For any such relation r from ∆i to ∆j an any individual

d ∈ ∆i, r(d) denotes the set {d′ ∈ ∆j | < d, d′ >∈ r}. For any subset D ⊆ ∆i, r(D) denotes ∪d∈Dr(d) and
we call it the image set of D.

The importing relation must satisfy the following three conditions: 1) every importing relation is one-to-one in
that it maps an object of tIi to a single unique object in tIj , 2) importing relations are consistent for different
terms, i.e. for any i : t1 6= i : t2 and any x, x1, x2 ∈ ∆i, r

t1
ij (x) = rt2ij (x) and rt1ij (x1) = rt2ij (x2) 6= ∅ → x1

= x2, and 3) Compositional Consistency: if ri:t1ik (x) = y1, ri:t2ij (x) = y2, ri:t3jk (x) = y3, and y1, y2, y3 are not
empty set, then y1 = y3.

The image domain relation between Ii and Ij is rij = ∪trtij and is strictly one-to-one. We can imagine the
image domain relation as an isomorphism that "copies" the relevant part of the Ii domain to the Ij domain and
establishes unambiguous communication between the two packages. A very strong contradiction to PDL
importing with regard to DDLs and E-Connections lies in the fact that local domain disjointness doesn’t
need to hold anymore. In fact, there are cases where a local model partially overlaps with the model of an
imported module.

A concept i : C is satisfiable with respect to a PDL O = < {Pi}, {Pi
t→ Pj}i 6=j > if there exists a

distributed interpretation of O such that CIi 6= ∅. A package Pk witnesses subsumption i : C v j : D iff
rCik(C

Ii) ⊆ rDjk(DIj) holds for every model of Pk and all packages in its importing closure.

3.5.3 Reasoning

The main motivation behind a tableau algorithm for ALCPC (the extension of the closed propositional De-
scription Logic ALC with packages) is distribution. Instead of a centralized inference procedure constructing
a single global tableau of the ontologies, we would prefer multiple federated local tableau, which would re-
sult in the distribution of the inference load and precipitation of the inference. That is possible by the image
relations, i.e. a local tableau can create "image" nodes of its nodes in another local tableau. Specifically:

Definition 17 A distributed tableau for an ALCP ontology {Pi} is a tuple < {Ti}, {rij}i 6=j >, where Ti is
a local ALC tableau for the package Pi, rij is the image relation between Ti and Tj , such that it creates
one-to-one mappings from a subset of nodes in Ti to a subset of nodes in Tj . For any i-node x and any
j-node y, (x, y) ∈ rij , x is called the pre-image of y and y the image of x. The local label Li(x) of x in a
local tableau Ti only contains i-concepts.

It is important to notice that unlike the combined tableau for E-Connections, in the distributed tableau envi-
ronment all local tableau will be autonomously created and maintained by local reasoners, while the commu-
nication between them is more relaxed, resembling peer-to-peer networks. The communication between a
local tableau Tj and another local tableau Ti is accomplished by the following set of primitive messages:
1) Membership m(y,C): given an individual y and an i-concept C, querying whether there is a pre-image or
image y′ of y in Ti, such that C ∈ Li(y′);
2) Reporting r(y,C): given an individual y and an i-concept C, if there is a pre-image or image y′ of y in Ti,

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 35 of 93

C /∈ Li(y′), then Li(y′) = Li(y′) ∪ {C}; if there is no existing pre-image or image y′ of y, then create a y′

with L(y′) = {C} and add (y′, y) to the image relation rij ;
3) Clash⊥(y): an individual y in Tj contains a clash; and
4) Model>(y): no expansion rules can be applied on y or any of its descendants in Tj .

In the trivial case where i = j, the messages above are reduced to local operations: m(y, C) is reduced to
querying whether Cb ∈ Lj(y), r(y, C) is reduced to adding C to Lj(y). ⊥(y) reports local inconsistency,
and >(y) reports completion of the local tableau.

For these primitive messages it is important that a local tableau knows each time which other local tableau
to address to, that is the destination package. Formally:

Definition 18 An atomic concept C or its negation ¬C destination is the home package of C, i.e. HP(C). A
complex concept C destination is the package in which it is generated. Destination of C is denoted as δ(C).

ALCPC Tableau Expansion Rules

The expansion rules for ALC are well studied a concise presentation of them can be found at [BCH06d].
ALCPP expansion rules modify the ALC expansion rules, so that each module is only locally internalized,
and not globally internalized w.r.t. to a combined TBox; moreover, a local tableau can create copies of its
local nodes in other local tableau when needed during an expansion. The expansion rules are:

• u-rule: if C1 u C2 ∈ Li(x) and x is not blocked, then (1) if m(x,C1)=false, then do r(x,C1) (2) if
m(x,C2)=false, then do r(x,C2).

• t-rule: if C1 t C2 ∈ Li(x), x is not blocked, but m(x,C1) or m(x,C2) is false, then do r(x,C1) or
r(x,C2).

• ∃-rule: if ∃R.C ∈ Li(x), x is not blocked, and x has no R-successor y withm(y, C) = true, then create
a new node y with Li(< x, y >)={R} and do r(y, C).

• ∀-rule: if ∀R.C ∈ Li(x), x is not blocked, and x has an R-successor y with m(y, C) = false, then do
r(y, C).

• CE-rule: if CTi /∈ Li(x), then Li(x)=Li(x) ∪ CTi , where CTi is the internalized concept for the TBox
of Pi.

We say that a distributed tableau is distributively complete if no ALCPC expansion rules can be applied
on any of its local tableau, and it is distributively consistent if all of its local tableau are consistent. We
assume that a satisfiability query regarding some concept C is initially sent to a package Pj , called the
witness package. We first create the local tableau Tj with a node x0 labeled by {CTj}uC ({CTj}uC ∈ Ljx0),
and apply the ALCPC expansion rules, until a distributively complete and consistent tableau is found, or all
expansion processes eventually fail.

In order to ensure that no infinite expansion of the tableau will take place, one has to impose a suitable
blocking strategy on the tableau. To make things simpler, we assume that there are no cycles in the importing
relations, that is if some package Pi is being imported directly or indirectly by a package Pj , then the package
Pj cannot import directly or indirectly the package Pi. In that case the required blocking strategy to guarantee
termination is that a node x is blocked by a node y, iff both nodes are in the same local tableau Ti, y is a
local ancestor of x, and Li(x) ⊆ Li(y).
The reason this blocking mechanism works has to do with the acyclical importing relations and the way the
tableau expansion works. More concretely, if a tableau Ti contains an image node in another tableau Tj ,
then due to the acyclical nature of importing the tableau Tj as well as its descendant tableau will never report
a message to the tableau Tj . So, if there is a path from a node x to a node y in tableau Ti, then this path will
only contain nodes from the local tableau without traversing through image nodes in other tableau, and thus
it is enough to restrict blocking to the local tableau.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 36 of 93 NeOn Integrated Project EU-IST-027595

The coordination between different local tableau with acyclic importing makes use of the following operations:
1) Waiting: If a node x has sent a reporting message to another local tableau, x is temporarily blocked until
it receives a clash message from any of its image nodes, or model messages from all of its image nodes;
2) Clash Message: If a node x contains a local clash, or it receives a clash report, a) if there is no other
search choice that can be applied to x, send clash reports ⊥(x) to x’s local direct ancestor and all preimage
nodes, and destroy all image relations from x, or b) if there are other search choices, restore the state
(including image relations) of x to the state before the last choice, and try the next choice; and
3)Model Message: If no ALCPC expansion rules can be applied to x, x has no clash nor received any
clash message, there is no image node of x, or all image nodes return model messages, then send model
messages >(x) to x’s local direct ancestor and all preimage nodes.

The algorithm terminates when the root node in the local tableau of the witness package receives a clash
message or a model message. In the former case the input concept is unsatisfiable, while in the latter case
it is satisfiable. Moreover, it is sound and complete, and its worst case run time complexity is no greater than
that of the classical tableau for ALC w.r.t. the size of the input concept and the total size of the combined
terminology set of all packages.

3.6 A Decentralized Consequence Finding Algorithm in a Peer-To-Peer Set-
ting

3.6.1 Motivation

Most approaches dealing with distribution in the semantic web (and the approaches examined so far are no
exception to this) adopt a "the more complex, the better" point of view. More concretely, a very active aim of
these approaches is to stretch the expressivity of the constituent ontologies of the system as far as possible.
The main incentive behind this is that the richer the expressivity the better the application domain can be
modeled through the ontology and, consequently, the more functional and useful the whole system will be.
However, this high expression usually comes along with high reasoning costs and the resulting system might
be inefficient. Moreover, there are already a number of applications on the web, like social networks, where
the systems consist of a very big number of peers, each of whom describes a relatively simple taxonomy,
and the primary objective is to achieve scalability and efficient dynamic behavior.

A "small is beautiful" approach is definitely more appropriate in these cases. We can imagine such systems
consisting of a big number of peers, each of them providing a simple personalized ontology (for example
a taxonomy), and the peers can be connected with other peers through logical mappings. Such mappings
contribute to a collaborative exchange of data between adjacent peers, so that one peer can have access
to relevant data stored by other peers, to which it is connected through mappings. In such a setting there is
no peer trying to impose itself on the other peers its own ontology and there is nothing like a super-peer or
a central mediator, which controls the system and has a global overview of the peers and their connections,
as in that case the scalability of the system would be severely suppressed. On the contrary, we consider
distributed architectures, where every peer can dynamically enter and leave the network, and in addition to its
own ontology it can also mediate between some other peers of the system to ask and answer queries. Such
an approach promotes a novel nature of the semantic web, where the semantic web is actually conceived as
a peer-to-peer data management system of very large dimensions.

This approach is extensively examined at [RAC+06] by Rousset et al. The "small is beautiful" character is
realized in this case by considering the full propositional fragment of OWL-DL to express the local ontologies
instead of other more expressive languages, which come nevertheless at a greater cost. Queries are asked
to a peer in terms of its local ontology and are answered using available mappings of the given peer with
its acquainted nodes. They are then translated into a correspondent distributed propositional theory and
the produced query rewritings are evaluated by a message passing algorithm named DeCA (Decentralized
Consequence Finding Algorithm). These results are the main contributions of the work at [ACG+06]. In the
sections to follow, we provide a summary of these results.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 37 of 93

3.6.2 Formalisms

Data Model

Each peer ontology contains a local ontology expressed in the full propositional fragment of the OWL-DL
language. Atomic concepts, the top concept (>) and the bottom concept (⊥) form the inductive basis of the
concept descriptions, which are inductively defined as the union (∪), the intersection (∩) and the negation (¬)
of concept descriptions. Axioms of class definitions are either equivalence (complete definition) or inclusion
(partial definition) axioms, where the left side is always an atomic concept. Terminological assertions on the
available class descriptions is possible through axioms on class descriptions, and can can be equivalence,
inclusion and disjointness. It is clear that the underlying model of the peer ontology provides the same level
of expressivity as the full propositional calculus. It mainly allows for taxonomies of class descriptions along
with disjointness axioms.

The local ontology of the peer provides a specification of the modeling level. On the low level we have the
data storage and for this purpose we need another specification that captures the classes that are respon-
sible for the data storage. This is accomplished through 1) the declaration of atomic extensional classes in
terms of atomic classes of the peer ontologies, and 2) assertional statements over the extensional classes.
More concretely, declaration of atomic extensional classes is possible with inclusion assertions between the
extensional class and a class description of the ontology.

When a peer enters a peer-to-peer network, it establishes a number of mappings with its acquainted peers.
A mapping in this context can be a disjointness, equivalence or inclusion axiom involving atomic classes
of different peers. The mappings express the correspondences between different peers and are taken into
account during the distributed reasoning procedure.

In this setting no super-peer with a global, unified schema exists. Contrary to that, there are only peers with
knowledge of their local ontology and the nodes, which they are acquainted through mappings with. For each
such peer Pi let Oi, Vi and Mi be the assertions defining the local ontology, the extensional classes and the
mappings, respectively. The schema of the peer-to-peer network P , written as S(P), is defined as the union
∪i=1..nOi ∪ Vi ∪Mi.

Semantics is defined in terms of interpretations, as is the case with DLs (and first order logics in general),
so we choose not to enter into details. We only notice that a model is an interpretation that satisfies all the
axioms of the distributed schema.

Query Rewriting through Propositional Encoding

A query is posed to a peer using its vocabulary and it is a logical combination of class descriptions of the
given peer ontology. Besides the local peer it is possible to infer possible answers through remote nodes that
it is acquainted with, so interactions between the local nodes and the acquainted nodes must additionally
be taken into consideration. To achieve this, the query is being rewritten into a set of rewritings that are
expressed in terms of only extensional classes, both of the local peer an of its adjacent nodes. These
rewritings provide in intensional form the answers to the initial query and can then be further processes in
order to take the (extensional) answers. We have the following definition:

Definition 19 Given a peer-to-peer network P = {Pi}i=1..n, a propositional combination Qe of extensional
classes is a rewriting of a query Q iff P |= Qe v Q. Qe is a proper rewriting if there exists some model I of
S(P) such that QIe 6= ∅. A conjunctive rewriting is defined as a rewriting which is a conjunction of extensional
classes. A rewritingQe is called a maximal (conjunctive) rewriting if there does not exist another (conjunctive)
rewriting of Q strictly subsuming Qe.

The reason we are so interested in query rewriting is a result proved at [GR04] stating that when a query has
a finite number of maximal conjunctive rewritings, then the query answers can be obtained as the the union
of the answers of the the query rewritings. Obviously, in such a context the main problem is to find an efficient

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 38 of 93 NeOn Integrated Project EU-IST-027595

procedure for query rewriting. In the full propositional calculus every set of propositions can be translated
into its equivalent clausal form. Inspired by this observation and by the restriction of the language to the
propositional DL fragment, Rousset et al. first encode the distributed schema of the peer-to-peer network
and the query to their propositional encodings. Then they apply a novel message-based algorithm for con-
sequence finding in distributed propositional theories and this algorithm returns a set of logical combinations
of extensional classes. Since the (intentional) answer set can be transformed to its equivalent (finite) normal
clausal form, the condition of a finite number of maximal conjunctive rewritings holds, and we can then get
the query answers as described above. Let us now see that in a little more detail.

For propositional encoding, we translate the query and every schema axiom to an equivalent propositional
formula, where atomic classes play the role of propositional variables. The propositional encoding of a class
description is:

• Prop(>) = true, Prop(⊥) = false

• Prop(A) = A, if A is an atomic class

• Prop(D1 uD2) = Prop(D1) ∧ Prop(D2)

• Prop(D1 tD2) = Prop(D1) ∨ Prop(D2)

• Prop(¬D) = ¬Prop(D)

The propositional encoding of the axioms is on the other hand as follows:

• Prop(C v D) = Prop(C)⇒ Prop(D)

• Prop(C ≡ D) = Prop(C)⇔ Prop(D)

• Prop(C uD ≡ ⊥) = ¬Prop(C) ∨ ¬Prop(D)

In order to establish the main propositional transfer result, we need one more definition from propositional
calculus. More specifically, if T a clausal theory and q a clause, then a clause m is called a prime implicate
of q w.r.t. T iff T ∪ {q} |= m and for any other clause m′, if m′ is an implicate of q w.r.t. T and m′ |= m
then m′ ≡ m. Moreover, m is called proper if we have additionally that T 6|= m. The following theorem is
fundamental:

Theorem 3 Let P be a peer-to-peer network and let Prop(S(P)) be the propositional encoding of the dis-
tributed schema. Then:

• S(P) is satisfiable iff Prop(S(P)) is satisfiable.

• qe is a maximal conjunctive rewriting of a query q iff ¬Prop(qe) is a proper prime implicate of ¬Prop(q)
w.r.t. Prop(S(P)) such that all its variables are extensional classes.

From the above theorem, it immediately follows that the maximal conjunctive rewritings can be obtained by
the negation of the proper prime implicates of ¬q w.r.t. the propositional encoding of the schema of S(P). We
notice that since the number of proper prime implicates of a clause w.r.t. to a clausal theory is always finite,
every query has a finite number of query rewritings and, thus, the answers to the query can be computed as
the union of the answers to the given rewritings. Moreover the data complexity is in PTIME [GR04].

The remaining problem is consequence finding in distributed propositional theories, which computes the
proper prime implicates of a query w.r.t. a distributed propositional theory. Rousset et al. propose at
[ACG+06] a message-based algorithm that takes as input a literal and produces all the proper prime im-
plicates for a given set of target variables. The fact that the algorithm takes as input a literal and not a more
complex logical combination poses no problem, since we can decompose the query to its literals, find the
corresponding maximal rewritings and combine them in a way that we get the resulting maximal conjunctive
queries. The next section gives a short overview of this algorithm.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 39 of 93

3.6.3 Reasoning

The message-based algorithm for consequence finding in distributed propositional theories is based on these
observations:

• The initial query posed to a certain local node can after its propositional encoding decomposed into
its corresponding literals. Finding the query rewritings for each of them is enough, since taking their
logical combinations can produce the rewritings for the initial query.

• For each such literal the peer which we pose the query to checks resolves this literal upon the clauses
of its local propositional theory and keeps only the clauses where the non-shared variables belong
to the target variables. If a contradiction is reached, then no rewritings can be obviously produced.
Of course before the resolution takes place, the local peer must ensure that the literal has not al-
ready computed the rewritings and also that no rewritings for the complement of the literal have been
computed in the reasoning branch, otherwise we infer a contradiction.

• For the clauses obtained by the previous post the peer queries its acquaintances so as to find other
possible query rewritings by passing them query messages.

• After getting back the rewritings from its acquainted peers (in an asynchronous way) through answer
messages the peer combines the different rewritings and produces thus the full rewritings of the initial
query, where only target variables are used. It takes care so that every rewriting is produced only once.

• During this procedure every peer needs to know if all the rewritings have been sent back to him, oth-
erwise termination of the algorithm would not be guaranteed. This condition is satisfied by demanding
that the peers send explicit final messages to the peers above them in the reasoning branch so as to
let them know that all rewritings asked have been produced.

This algorithm has the properties of soundness, completeness (depending on the acquaintance graph) and
termination. In the context of the present work, we have omitted proofs and its interesting technical details.
The interested reader is referred to [ACG+06].

3.7 A Mapping System for Query Answering in a Peer-To-Peer Setting

3.7.1 Motivation

When building large-scale applications in the Semantic Web, three important challenges need to be ad-
dressed. The first is the coordination of the different nodes. In completely centralized environments, we
assume the existence of a super-node having control over all other nodes of the system and helping to their
coordination, whereas in completely decentralized infrastructures every local node can act autonomously
and no global coordination exists. The second challenge has to do with the heterogeneity of the available
data sources. In a large-scale scenario with multiple developer communities, each contributing a fraction of
the total application, the adoption of a global schema is highly unrealistic. On the contrary, it makes more
sense to think of heterogeneous data sources, in which case the need for specifying the relationship of one
to another arises. The third difficulty that we have to overcome is the development of efficient techniques for
reasoning over multiple nodes, by also taking into account the semantics of mappings.

The work of Haase and Wang at [HW07] describes a decentralized infrastructure for query answering over
distributed ontologies, called KAONp2p. Each of the aforementioned challenges is answered at their work
by a suitable approach: the decentralized architecture with no global coordination is provided by a peer-
to-peer network (whose motivation we described in the previous session), heterogeneity in ontologies can
be overcome by establishing mappings among the local ontologies residing on different nodes that have the
form of conjunctive queries, whereas efficient reasoning techniques are available by transforming the relevant

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 40 of 93 NeOn Integrated Project EU-IST-027595

local ontologies along with all corresponding mappings into their equivalent disjunctive datalog program, for
which efficient evaluation and optimization techniques, like magic sets, are available.

Their work is mainly based on the previous work by Haase and Motik [HM05], which defines a mapping sys-
tem for the integration of OWL-DL ontologies and provides a query answering mechanism for the integrated
system.

In this section, we will look initially into the formalisms and the query answering process suggested at [HM05]
and we will then see how the KAONp2p system allows for a distributed reasoning process.

3.7.2 Formalisms

Preliminaries

Reducing SHIQ to Disjunctive Datalog. A common characteristic among the approaches investigated
so far is that at the center of the reasoning procedure lies the tableau calculus. This is of course not sur-
prising, given the very robust results obtained in practice by most tableau reasoners. Indeed, the experience
shows that these systems perform in practice much better that what their ExpTime worst-time complexity
suggests.

Despite their very good performance for TBox assertions, these systems exhibit a relatively poor performance
when queried over large ABoxes, which can be summarized to two main reasons: 1) tableau-based algo-
rithms treat all individuals the same, that is they don’t try to group them according to common properties, and
2) only a rather small part of the ABox is every time relevant to answer the query, nevertheless the tableau
calculus does not really take the query information into account [MSS05].

A novel approach proposed by Motik at [Mot06] overcomes this problem by reducing SHIQ Description
Logics to disjunctive datalog programs, while preserving the semantics of the knowledge base. Under the
disjunctive datalog formalism one can make use of different optimization techniques such as magic sets
or join-order optimization. Magic sets permit that only a set of relevant facts is derived during the query
evaluation. while join order optimization manipulates individuals in sets and then applies inference rules to
all individuals in a set rather than to each individual separately. The reduction from DLs to disjunctive datalog
is quite extended and will not be described in this report.

Data Integration Foundations. Mappings server primarily as a way to integrate different ontologies. Lenz-
erini [Len02] has investigated the theoretical foundations of data integration through mappings.

Definition 20 A data integration system I consists of a triple < G,S,M >, where:

• G is the global schema, expressed in a language LG over an alphabet AG. The alphabet comprises a
symbol for each element of G.

• S is the source schema, expressed in a language LS over an alphabet AS . The alphabet AS includes
a symbol for each element of the sources.

• M is the mapping between G and S, constituted by a set of assertions of the forms 1) qS qG and 2)
qG qS , where qS and qG are two queries of the same arity, respectively over the source schema S
and over the global schema G. Queries qS are expressed in a query language LM,S over the alphabet
AS , and queries qG are expressed in a query language LM,G over the alphabet AG.

The source schema describes the structure of the sources, where the real data lie, whereas the global
schema provides a reconciled, integrated and virtual view of the underlying sources. Queries to the data
integration system are posed in terms of the global schema G, and are expressed in a query language LQ
over the alphabet AG.

In order to assign semantics to a data integration system I = < G,S,M >, we first consider a database D
that conforms to the source schema S and satisfies all constraints in S. We can then specify the information

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 41 of 93

content of the global schema G. We call global database for I any databases for G. A global database B for
I is said to be legal with respect to D. if: 1) B is legal with respect to G, i.e. B satisfies all the constraints of
G, and 2) B satisfies the mapping M with respect to D.

It is very interesting to notice that the semantics of a data integration system depends on how we interpret
the mapping component of the integrated system. The two main approaches are the local as view approach
(LAV) and the global as view approach (GAV). In the former approach the content of each source element
s is characterized in terms of a view qG over the global schema (s qG), while in the latter the content of
each element of the global schema g is characterized in terms of a view qS over the sources (g qS).

Finally, given a source database D for I , the answer qI,D to a query q in I with respect to D, is the set of
tuples t of objects in a fixed domain Γ such that t ∈ qB for every global database B that is legal for I with
respect to D. The set qI,D is called the set of certain answers to q in I with respect to D.

Rules and Queries

Conjunctive queries over a SHOIN(D) knowledge base are defined as follows:

Definition 21 Let KB be a SHOIN(D) knowledge base, and let Np be a set of predicate symbols,
such that all SHOIN(D) concepts and all abstract and concrete roles are in NP . An atom has the form
P (s1, ..., sn), denoted also as P (s), where P ∈ NP , and si are either variables or individuals from KB. An
atom is called ground atom, if it is variable-free. An atom is called a DL-atom if P is a SHOIN(D) concept,
or an abstract or a concrete role. Let x1, ...,xn and y1, ...,ym be sets of distinguished and non-distinguished
variables, denoted also as x and y, respectively. A conjunctive query over KB, written as Q(x,y), is a con-
junction of atoms ∧Pi(si), where all si together exactly contain x and y. A conjunctive query Q(x,y) is
DL-safe if each variable occurring in a DL-atom also occurs in a non-DL atom in Q(x,y). The translation of
such a query into a first order formula is:

π(Q(x,y)) = ∃y :
∧
π(Pi(si))

For Q1(x,y1) and Q2(x,y2) conjunctive queries, a query containment axiom Q2(x,y2) v Q1(x,y1) has
the following semantics:

π(Q2(x,y2) v Q1(x,y1)) = ∀x : π(Q1(x,y1)← Q2(x,y2)))

The main inferences for conjunctive queries are:

• Query Answering. An answer of a conjunctive queryQ(x,y) w.r.t. KB is an assignment θ of individuals
to distinguished variables, such that π(KB) |= π(Q(xθ),y).

• Checking query containment. A query Q2(x,y2) is contained in a query Q1(x,y1) w.r.t. KB, if
π(KB) |= π(Q2(x,y2) v Q1(x,y1)).

We now give the definition of rules:

Definition 22 A rule over a SHOIN(D) knowledge base KB has the form H ← Q(x,y), where H is an
atom and Q(x,y) a query over KB. We assume rules to be safe, i.e. each variable from H occurs in x as
well. A rule is DL-safe if and only if Q(x,y) is DL-safe. We extend the operator π to translate rules into
first-order formulas as follows:

π(H ← Q(x,y)) = ∀x : π(H)← π(Q(x,y))

A program P is a finite set of rules and we say that P is DL-safe if all rules are DL-safe. A combined
knowledge base is a pair (KB,P) and we define π((KB,P)) = π(KB) ∪ π(P). The main inference in
(KB,P) is query answering, i.e. deciding whether π((KB,P)) |= A for a ground atom A.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 42 of 93 NeOn Integrated Project EU-IST-027595

An integration system for OWL-DL

Based on the section 3.7.2, Haase and Motik proceed at [HM05] with the introduction of a mapping system
for OWL-DL ontologies. Such a mapping system is still a triple < S, T,M >, where now the global schema
is just the target OWL-DL ontology T , the source schema is the source OWL-DL ontology S, and for the
mapping assertions qS qT we have that qS and qT are conjunctive queries over S and T , respectively,
with the same set of distinguished variables x, and ∈ {v,w,≡}.
An assertion qS v qT is called a sound mapping, requiring that qS is contained by qT w.r.t. S ∪ T , and is
equivalent to an axiom ∀x : qT (x,yT) ← qS(x,yS); an assertion qS w qT is called a complete mapping,
requiring that qT is contained by qS w.r.t. S ∪ T , and is equivalent to an axiom ∀x : qS(x,yS)← qT (x,yT);
and an assertion qS ≡ qT is an exact mapping, requiring it to be sound and complete.

The semantics of the mapping system is defined through translation into first order logic.

Definition 23 For a mapping system MS = (S, T,M), let

π(MS)=π(S) ∪ π(T) ∪ π(M).

The main inference for MS is computing answers of Q(x,y) with respect to MS, for Q(x,y) a conjunctive
query.

This semantics is equivalent to the usual model theoretic semantics based on local and global models, where
a query answer must be an answer in every global model. Unfortunately, query answering in such a general
setting is undecidable, so two special types of mappings have been introduced that lead to decidable query
answering.

The first class of mappings, called full implication mappings, captures the mappings that can be directly
expressed in OWL-DL. In this case, qS and qT are DL-atoms of the form Ps(x) and Pt(x), where Ps and Pt
are either DL concepts (concept mappings) or abstract or concrete roles (role mappings).

The second class of mappings is inspired by the fact that the undecidability of query answering for general
implication mappings is due to the unrestricted use of non-distinguished variables in either qS or qT . To
overcome this, we disallow the use of non-distinguished variables in the query that is located in the head
of the assertion. These mappings are called safe mappings. Query answering with such mappings is still
undecidable in the general case. Therefore, we require the query in the body of the assertion to be DL-safe,
thus limiting the applicability of the rules to known individuals. Thus mappings correspond to (one or more)
DL-safe rules, for which efficient algorithms for query answering are known.

Extending the second class of mappings, we can relax the restrictions introduced by DL-safety, by eliminating
non-distinguished variables through a reduction of tree-like parts of a query to a concept. In that case, we
get mappings with tree-like query parts.

3.7.3 Reasoning

The original work at at [HM05] bases on the notion of DL-safe mappings and allows query answering by
integrating the local ontologies along with the mappings established between them. As this is highly non-
scalable, the work at [HW07] avoids doing the integration of the whole system and instead it takes into
account only these ontologies that are considered relevant to query answering according to some criteria. In
this section, we first discuss how query answering is realized through integration of the whole system, and
then we describe how we can only restrict reasoning to ontologies with relevant information.

Query Answering

For a set of local sours ontologies S1, ..., Sn, a global ontology T and corresponding mapping systems
MS1, ...,MSn with MSi = (Si, T,Mi), an ontology integration system IS is a mapping system (S, T,M)

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 43 of 93

with S = ∪i∈{1...n}Si and M = ∪i∈{1...n}Mi. The main inference task for IS is still to compute answers of a
conjunctive query Q(x,y) over T w.r.t. S ∪ T ∪M .

The algorithm proposed is based on the reduction from SHIQ(D) to disjunctive datalog (Section 3.7.2),
from which it inherits two limitations: 1) IS is required to be based on SHIQ(D) knowledge bases, and 2)
the conjunctive query Q(x,y) and the queries in mappings are not allowed to contain transitive roles. The
algorithm starts by eliminating non-distinguished variables from Q(x,y) and the mappings using the roll-up
technique. After roll-up, the obtained mappings and queries are required to be DL-safe, which is needed
for decidable query answering. In this case, the source ontology, target ontology and the mappings are
converted into a disjunctive datalog program, and the original query is answered in the obtained program.
This algorithm exactly computes the answer of the query in the integrated system.

Reasoning in KAONp2p

As mentioned at the beginning of the section, the KAONp2p infrastructure consists in reality of a peer-to-
peer network. Each node of the network accommodates the local OWL-DL ontology, whereas between the
different nodes we can define mappings of the form discussed in section 3.7.2. Moreover, each node of
the distributed system can be asked a conjunctive query. Obviously, the main objective of the system is to
answer the query posed to the local node by taking into account only the relevant information residing on
remote nodes, without having to integrate the whole system, as the latter option would be highly unscalable.
Below we briefly discuss how this is made visible under the KAONp2p system by singling out the main
components of the architecture.

Firstly, a suitable API/User Interface in every node is used to pose the query on the node. The Query Man-
ager, the component responsible for answering queries selects on a local level (without additional external
coordination as would be the case in centralized infrastructures) all network resources that are relevant to
answer that particular query. For that purpose, every local node keeps a Metadata Repository containing
metadata information about the available local or distributed resources. These metadata can be descriptive,
provenance, dependency, and statistical. The selecting algorithm matches the subject of the query against
the subject found in the descriptive metadata. For describing the system nodes themselves as long as the es-
tablished mappings among them is used. The outcome of the resource selection phase is a virtual ontology
that logically integrates the relevant heterogeneous ontologies, which are connected through their mappings.

Finally, a local Reasoning Engine in every node takes care of the query evaluation against the virtual inte-
grated ontology, more specifically the KAON2 reasoner. It is important to note that the distributed ontologies
making the virtual integrated ontology do not need to reside locally, but can be materialized in a distributed
way. In order to compute the equivalent disjunctive datalog program, we only need to physically integrate the
T-Box parts of the different ontologies along with their mappings, which are usually much smaller than the
ABoxes and pose therefore negligible computational burden. As far as the ABox parts are concerned, only
the extensions from relevant predicates appearing in the datalog program have to be accessed.

Without entering into more technical and experimental details, we only mention that in such a setting is can
be experimentally shown that the time cost of query answering is by and large due to the data size, whereas
the extent of distribution and heterogeneity only slightly affects the computational cost. This rather proves
the success of the underlying query answering technique, which allows for a performance similar to one
homogenous node infrastructures.

3.8 Conclusion

During the last decade the semantic web has been constantly evolving coming to some extent closer to the
semantic web vision. A number of W3C recommendations are now available, while the OWL recommenda-
tion has very recently been proceeded by the extended OWL 2 recommendation. On the other hand, more
and more applications using semantic web standards (mainly RDF/RDFS) are emerging, especially around
the areas of semantic search engines, travel planning applications, electronic commerce and knowledge

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 44 of 93 NeOn Integrated Project EU-IST-027595

hhhhhhhhhhhApproach
Dimension Language Relationships Reasoning Reasoning Algorithmic

Task Paradigm Features

DDLs SHIQ Bridge Rules Subsumption Distributed SHIQ
Tableau Calculus Complexity

E-Connections SHIF (D) Link Constructors Subsumption
Combined no less than

Tableau Calculus SHIF (D)
Complexity

PDLs ALCPC
Import of Subsumption Message-Based ALC

Foreign Terms Distributed Tableau Complexity

SomeWhere
Propositional Inclusion Axioms Propositional Message-Based PTIME

DLs over Query Answering Consequence Data
Atomic Classes Finding Algorithm Complexity

DL-Safe Mappings SHIQ(D) DL-Safe Mappings
DL-Safe Disjunctive NP-Complete

Conjunctive Datalog Data
Query answering Complexity

Table 3.1: Comparison of the described approaches.

management, while the semantic web community is actively pushing towards this direction through a number
of initiatives, like the Billion Triple Challenge.

All these steps point to a relative maturity of the semantic web field and a big change on the impact of
the semantic web technologies on the application-level. However, as long as the issue of scalability to
very large schema and (mainly) data volumes is unresolved, the practical feasibility of a complete or even
partial fulfilment of the semantic web vision cannot be guaranteed. It is thus sine qua non that the research
community focuses on the problem of data distribution and distributed reasoning and comes up with novel
ideas in the direction of system scalability. This is straightly analogous to the problems faced and to a large
extent resolved by the database community in the previous decades.

In this chapter an overview of the state of the art in distributed reasoning was presented and compared along
a number of different dimensions. We discussed a number of different approaches for distributed reasoning
by giving a relative emphasis on the main technical details of the underlying formalisms for the interested
reader. Most of this has already been discussed at the introduction and will not be repeated here. We
summarize some basic dimensions in Table 3.1. It is important to mention that independent of the specific
technique, two features are always present:

• Relationships: Since we consider distributed, heterogeneous data sources (data or schemata) a num-
ber of relationships between the different sources has to be established that shows how the different
sources are related one to another. These relationships are in essence formalisms that consist of
syntax and semantics and their nature can be radically different. They are of exceptional importance
in a distributed environment, since their definition has a very special impact on the semantics of the
whole system and the inference procedures. Defining these formalisms is a central part of distributed
systems and a lot of careful consideration has to take place prior to their definition.

• Tradeoff between Expressiveness and Complexity: Obviously, high expressiveness comes at the cost
of high complexity. On the other hand, a basic motive behind the distributed systems has to do with
performance precipitation. That implies that a balance between the two features has to be accom-
plished if practical feasibility is to be achieved. So far, this is no different from what is already the
case with description logics formalisms. For distributed systems, it is additionally very important that
the resulting system scales well, which ideally means that the complexity of the resulting system can
be reduced to the complexity of the local parts. Unfortunately, this is usually the case for systems
with simple structure, like acyclic structures, where we have no recursion. The general problem of
reasoning distributedness is of especially hard nature and has been posing grave challenges to the AI
community for many decades.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 45 of 93

Chapter 4

Metamodels for E-Connections and
Mapping Formalisms

4.1 The Extended OWL Metamodel for E-Connections

Deliverable 1.1.2 [D1.] introduced the core of the networked ontology model, which is a MOF-based meta-
model. For this purpose, the core modeling features provided by MOF were used, while for stating the
metamodel even more precisely, we augmented it with OCL-constraints, which specify invariants that have
to be fulfilled by all models that instantiate the metamodel.

In general, a metamodel for an ontology language can be derived from the modeling primitives offered by
the language. The metamodel for OWL ontologies on Deliverable 1.1.2 had a one-to-one mapping to the
functional-style syntax of OWL 1.1 and thereby to its formal semantics.Along with the explanation of the
various OWL constructs, it introduced and discussed the corresponding metaclasses, their properties and
their constraints. In order to simplify the understanding of the metamodel, we added accompanying UML
diagrams to our discussion.

On the other hand, in the context of the WP7, we have developed a formalism for safe conjunctive query
answering in E-Connections of EL++Knowledge Bases. Since E-Connections play a prominent role in that
case and given that Deliverable 1.1.2 does not look into the networked ontology model of E-Connected
ontologies, we consider it appropriate to devote this Chapter into presenting the core metamodel along with
the accompanying UML diagrams for the E-Connections metamodel.

This chapter extends the MOF-based metamodel for OWL 1.1 with E-Connections, based on the functional-
style syntax discussed in [GPS06]. Instead of presenting the whole metamodel, we prefer to focus exclusively
on the E-Connections extension. The Chapter is structured in six sections: Section 4.1.1 provides the
general motivation of the E-Connections, Section 4.1.2 starts a general discussion on the subject of link
properties and E-Connections, after which Section 4.1.3 presents the link property entity. Next, Section 4.1.4
demonstrates class descriptions based on link properties and Section 4.1.5 presents link property axioms.
Finally, Section 4.1.6 presents assertions.

4.1.1 Motivation of E-Connections

Effective knowledge reuse and sharing has been a major goal of the Web Ontology Working Group. Indeed,
as ontologies get larger, they become harder for reasoners to process and for humans to understand. On-
tology reuse can in this case prove very useful, as it allows one to take into account existing knowledge and
link it or integrate it into their knowledge base, without having to construct a large ontology from scratch. The
intuition behind this is that if we think of ontologies as terminological and assertional descriptions of a certain
domain, then we could split the broader ontology into different smaller ontologies that are independent and
self-contained modules and that describe some more specific domain of our application.

Of course, ontology reuse requires that suitable tools should be provided for integrating and connecting

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 46 of 93 NeOn Integrated Project EU-IST-027595

the modular ontologies. The Web Ontology Language (OWL) provides some support for integrating web
ontologies by defining the owl : imports construct, which allows one to include by reference in a knowledge
base the axioms contained in another ontology, published somewhere on the Web and identified by a global
name (a URI). However, this construct is not adequate enough. The most fundamental problem lies in the
fact that it brings into the original ontology all the axioms of the imported one. This prohibits partial reuse
and it results in exclusively syntactical modularity, as opposed to the logical modularity.

One approach that has been thoroughly studied in the last years is that of E-Connections [KLWZ04]. The
E-Connections formalism provides a general framework for combining logical languages that are expressible
as Abstract Description Systems (ADS). The main motivation and contribution is that it combines decidable
logics in such a way that the resulting combined formalism remains decidable, although that can potentially
come at the cost of higher worst-case complexity.

Based on this theoretical framework, the authors in [GPS06] present a syntactical and semantic extension
of OWL that covers E-Connections of OWL-DL ontologies, showing how such an extension can be used to
achieve modular ontology development on the Semantic Web and how E-Connections provide a suitable
framework for integration of Web Ontologies.

4.1.2 Preliminaries

In this section, we extend the definitions of the networked ontology model from Chapter 4 to take into account
the E-Connections formalism.

We start by taking a closer look at the E-Connections. We first define the Link Property, which is the building
stone of the E-Connection.

Definition 24 A set of Link Properties εAB between two ontologies A and B with disjoint domains is a set
of special relations between them, which relate the domain of ontology A to the domain of ontology B. A
Link be conveniently conceived as a superrole relating elements of the two domains, as opposed to object
properties, which relate elements of the same interpretation domain.

Based on the notion of the Link Properties we can build the combined knowledge base or E-Connection
of the two ontologies A and B, which talks about the domains of A and B and in addition to that about the
relationships between them. [GPS04b] offers a closer look at the syntax of the combined language (e.g. new
available link constructors) and at the semantics by defining suitable interpretations.

4.1.3 The Link Property Entity

Entities are the fundamental building blocks of OWL 2 ontologies. OWL 2 has five entity types: data types,
OWL classes1, individuals, object properties and data properties. In the extended model, we also consider
an additional entity, the link property, in line with what was discussed in the previous section.

OWL traditionally distinguishes two types of property expressions: object property expressions and data
property expressions, represented by the respective metaclasses ObjectProperty and DataProperty. In the
extended metamodel, we also introduce the LinkProperty.

A link property can possibly be defined as the inverse of an existing link property (see Example 1). The meta-
model has an abstract superclass LinkPropertyExpression for both the usual link property and the link prop-
erty defined as an inverse of another. Figure 4.1 gives its subclasses LinkProperty and InverseLinkProperty,
respectively representing normal and inverse link properties. The same figure also represents the LinkProp-
erty as a subclass of the more general Entity, as discussed previously. An inverse link property can be
defined based on any, normal or inverse, link property, hence the association inverseLinkProperty from the
metaclass InverseLinkProperty is connected to the superclass LinkPropertyExpression.

1OWL provides two classes with predefined URI and semantics: owl:Thing defines the set of all objects (top concept), whereas
owl: Nothing defines the empty set of objects (bottom concept).

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 47 of 93

Figure 4.1: Extended metamodel: link property expressions

Example 1 The following example illustrates the definition of an inverse object property:
InverseLinkProperty(MadeFromIngredient)

4.1.4 Class Expressions

Classes group similar resources together and are the basic building blocks of class axioms. The class
extension is the set of individuals belonging to the class. To define classes, OWL 2 provides next to a simple
class definition (metaclass OWLClass) several very expressive means for defining classes. The metamodel
defines a metaclass ClassExpression as abstract superclass for all class definition constructs.

Link properties provide suitable constructors for building complex concept expressions, by placing different
types of restrictions restrictions on link properties. This group of restrictions is actually reminiscent of the
constraints placed on object properties.

Figure 4.2 gives the first group of restrictions on the property value of object properties for the context of the
class.

The metaclass LinkAllValuesFrom represents the class construct that defines a class as the set of all objects
which have only objects from a certain other class expression as value for a specific link property (see
Example 2).

Example 2 The following example illustrates the definition of a class as a subclass of another class, which
is defined through a class description by restricting an object property:
SubClassOf(Medication ObjectAllValuesFrom(Treats Disease))

The OWL construct that defines a class as all objects which have at least one object from a certain class
expression as value for a specific link property, is represented by the metaclass LinkSomeValuesFrom. Both
ObjectAllValuesFrom and ObjectSomeValuesFrom have an association called foreignClassExpression, spec-
ifying the class description of the construct, whereas their association linkPropertyExpression specifies the
link property on which the restriction is defined. The label foreignClassExpression describes the role of the
association, namely the class expression has to come from the foreign ontology, with which the local ontology
is related via the link property under consideration.2 To define a class as all objects which have a certain
individual as value for a specific link property, the extended model provides a construct that is represented in
the metamodel by the metaclass ObjectHasValue, its association linkPropertyExpression specifying the link
property, and its association value specifying the link property value.

The second group of link property restrictions is depicted in Figure 4.3 and it deals with restrictions on the
cardinalities of link properties.

2 This important constraint is not totally captured by the UML diagram. Although it might be somehow possible to enforce such

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 48 of 93 NeOn Integrated Project EU-IST-027595

Figure 4.2: Extended metamodel: link property restrictions

A cardinality of a link property for the context of a class can be defined as a minimum, maximum or exact
cardinality. The first one of this group is represented by the metaclass LinkMinCardinality, which defines a
class of which all individuals have at least N different individuals of a certain class as values for the specified
link property (N is the value of the cardinality constraint) (see Example 3).

Example 3 The following example illustrates the definition of a class as a subclass of another class, which
is defined through a class description by restricting the cardinality of an object property:
SubClassOf(Medication LinkMinCardinality(1 madeFromIngredient Ingredient))

Secondly, the construct represented by the metaclass LinkMaxCardinality defines a class of which all indi-
viduals have at most N different individuals of a certain class as values for the specified link property. Finally,
the construct represented by the metaclass LinkExactCardinality defines a class of which all individuals have
exactly N different individuals of a certain class as values for the specified link property. To specify the car-
dinality (N) of these constructs, which is a simple integer, all three metaclasses have an attribute cardinality.
OCL constraints define that this cardinality must be a nonnegative integer3:

1. The cardinality must be nonnegative:
context LinkExactCardinality inv:
self.cardinality >= 0

2. The cardinality must be nonnegative:
context LinkMaxCardinality inv:
self.cardinality >= 0

restrictions by defining suitable OCL constraints, it would be cumbersome and thus it is preferable that tools that implement the
metamodel support these constraints.

3Note that it would make sense to define a constraint which specifies that when a minimum and a maximum cardinality on a link
property are combined to define a class, the minimum cardinality should be less than or equal to the maximum cardinality. However,
as the extended do not define this restriction and rely on applications to handle this, we also do not define an OCL constraint in the
metamodel.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 49 of 93

Figure 4.3: Extended metamodel: link property cardinality restrictions

3. The cardinality must be nonnegative:
context LinkMinCardinality inv:
self.cardinality >= 0

Additionally, they all have an association class and an association linkProperty representing the class re-
spectively the object property involved in the statement. Note that the multiplicity of the associations called
class have multiplicity 'zero or one' as the E-Connections syntax does not define the explicit specification of
the restricting class description as mandatory4.

4.1.5 Link Property Axioms

OWL defines six different kinds of axioms: entity annotations, declarations, class axioms, object property
axioms, data property axioms and assertions. In the extended E-Connection model we consider in addition
link property axioms.

The group of link property axioms contains constructs defining relations between different link properties,
definitions of domain and range and specifications of property characteristics. We first introduce the various
relations between link properties in Figure 4.4.

The first one, represented by the metaclass SubLinkPropertyOf, defines that the property extension of one
link property, specified through the association subLinkPropertyExpression, is a subset of the extension
of another link property, specified through the association superLinkPropertyExpression. The metaclass
EquivalentLinkProperty represents a construct that defines that the property extensions of two or more link
properties are the same.

To define the class to which the subjects of a link property belong, the extended model provides the domain
concept (see Example 4), whereas a range specifies the class to which the objects of the property, the
property values, belong. Figure 4.5 presents the metamodel elements for the constructs defining a link
property domain and range.

4In the case where it is not explicitly defined, called an unqualified cardinality restriction, the description is owl:Thing. That is
similar as with the

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 50 of 93 NeOn Integrated Project EU-IST-027595

Figure 4.4: Extended metamodel: link property axioms - part 1

Example 4 The following example illustrates the definition of the domain of an object property:
LinkPropertyDomain(madeFromIngredient Medication)

The metaclass LinkPropertyDomain specifies a link property and its domain via the associations property
respectively domain. Similarly, the metaclass LinkPropertyRange represents the construct to define the
range of a link property.

The remaining OWL link property axioms take a link property and assert a characteristic to it. In doing so,
link properties can be defined to be functional or inverse functional.

A functional link property is a property for which each subject from the domain, can have only one value
in the range, whereas an inverse functional link property can have only one subject in the domain for each
value in the range.

Figure 4.6 demonstrates that each of these two axioms has an own metaclass with an association linkProp-
erty to the class LinkPropertyExpression, specifying the property on which the characteristic is defined.

4.1.6 Assertions

In addition to the existing OWL assertions, the extended model defines a further assertion axiom to state
assertions about link properties.

To specify the value of a specified individual under a certain link property, the extended model provides the
link property assertion construct (see Example 5).

Example 5 The following example illustrates how the value of an individual under a link property, is defined:
LinkPropertyAssertion(madeFromIngredient aspirin acetylsalicylicacid)

Figure 4.7 depicts the construct in the metamodel as the metaclass LinkPropertyAssertion. It has an associ-
ation to property representing the involved link property, and two associations to Individual representing the
subject and the object of the assertion.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 51 of 93

Figure 4.5: Extended metamodel: link property axioms - part 3

4.2 Mapping Support (OWL)

When people are modeling the same domain, they mostly produce different results, even when then use
the same language. Mappings have to be defined between these ontologies to achieve an interoperation
between applications or data relying on these ontologies. This chapter provides an extension for the
metamodel for OWL and SWRL to give additional support for mappings between heterogeneous ontologies.

Section 4.2.1 introduces the metamodel extension in the same way as we did in the introduction of the
metamodel for OWL and SWRL, and for F-Logic. While introducing the various mapping aspects5, we
discuss their representation in the metamodel. Accompanying UML diagrams document the understanding
of the metamodel.6

The metamodel is a common metamodel for the different OWL mapping languages. On top of this common
metamodel, we define two sets of constraints to concretize it to two specific OWL ontology mapping
languages, DL-safe mappings and C-OWL. Section 4.2.2 starting on page 56 presents the extension for
C-OWL mappings, consisting of a set of constraints. Similarly, Section 4.2.3 starting on page 57 presents
the extension for DL-Safe Mappings.

4.2.1 A Common MOF-based Metamodel Extension for OWL Ontology Mappings

This section presents the common metamodel extension for OWL ontology mappings in two subsections:
Section 4.2.1 presents mappings, after which Section 4.2.1 presents queries.

5Remember, however, that the OWL ontology mapping languages and their general aspects, are not part of our contribution.
6In doing so, meta-classes that are colored or carry a little icon again denote elements from the metamodel for OWL or SWRL.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 52 of 93 NeOn Integrated Project EU-IST-027595

Figure 4.6: Extended metamodel: link property axioms - part 2

Mappings

We use a mapping architecture that has the greatest level of generality in the sense that other architectures
can be simulated. In particular, we make the following choices:

• A mapping is a set of mapping assertions that consist of a semantic relation between mappable ele-
ments in different ontologies. Figure 4.8 demonstrates how this structure is represented in the meta-
model by the five metaclasses Mapping, MappingAssertion, Ontology, SemanticRelation and Map-
pableElement and their associations.

• Mappings are first-class objects that exist independent of the ontologies. Mappings are directed, and
there can be more than one mapping between two ontologies. The direction of a mapping is defined
through the associations sourceOntology and targetOntology of the metaclass Mapping, as the map-
ping is defined from the source to the target ontology. The cardinalities on both associations denote
that to each Mapping instantiation, there is exactly one Ontology connected as source and one as
target.

These choices leave us with a lot of freedom for defining and using mappings. For each pair of ontologies,
several mappings can be defined or, in case of approaches that see mappings as parts of an ontology,
only one single mapping can be defined. Bi-directional mappings can be described in terms of two directed
mappings.

The central class in the mapping metamodel, the class Mapping, is given four attributes. For the assumptions
about the domain, the metamodel defines an attribute DomainAssumption. This attribute may take specific
values that describe the relationship between the connected domains: overlap, containment (in either direc-
tion) or equivalence.

The question of what is preserved by a mapping is tightly connected to the hidden assumptions made by
different mapping formalisms. A number of important assumptions that influence this aspect have been
identified and formalized in [SSW05]. A first basic distinction concerns the relationship between the sets
of objects (domains) described by the mapped ontologies. Generally, we can distinguish between a global
domain and local domain assumption:

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 53 of 93

Figure 4.7: Extended metamodel: assertions

Global Domain assumes that both ontologies describe exactly the same set of objects. As a result, seman-
tic relations are interpreted in the same way as axioms in the ontologies. This domain assumption is
referred to as equivalence, whereas there are special cases of this assumption, where one ontology
is regarded as a global schema and describes the set of all objects, other ontologies are assumed to
describe subsets of these objects. Such domain assumption is called containment.

Local Domains do not assume that ontologies describe the same set of objects. This means that mappings
and ontology axioms normally have different semantics. There are variations of this assumption in the
sense that sometimes it is assumed that the sets of objects are completely disjoint and sometimes
they are assumed to overlap each other, represented by the domain assumption called Overlap.

These assumptions about the relationship between the domains are especially important for extensional
mapping definitions, because in cases where two ontologies do not talk about the same set of instances,
the extensional interpretation of a mapping is problematic as classes that are meant to represent the same
aspect of the world can have disjoint extensions.

The second attribute of the metaclass Mapping is called inconsistencyPropagation, and specifies whether
the mapping propagates inconsistencies across mapped ontologies. uniqueNameAssumption, the third
attribute of the metaclass Mapping, specifies whether the mappings are assumed to use unique names for
objects, an assumption which is often made in the area of database integration. The fourth attribute, URI, is
an optional URI which allows to uniquely identify a mapping and refer to it as a first-class object.

The set of mapping assertions of a mapping is denoted by the relationship between the two classes Mapping
and MappingAssertion. The elements that are mapped in a MappingAssertion are defined by the class
MappableElement. A MappingAssertion is defined through exactly one SemanticRelation, one source
MappableElement and one target MappableElement. This is defined through the three associations starting
from MappingAssertion and their cardinalities.

A number of different kinds of semantic relations have been proposed for mapping assertions and are repre-
sented as subclasses of the abstract superclass SemanticRelation:

Equivalence (≡) Equivalence, represented by the metaclass Equivalence, states that the connected ele-
ments represent the same aspect of the real world according to some equivalence criteria. A very

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 54 of 93 NeOn Integrated Project EU-IST-027595

Figure 4.8: OWL mapping metamodel: mappings

strong form of equivalence is equality, if the connected elements represent exactly the same real world
object. Specific forms of the equivalence relation are to be defined as subclasses of Equivalence in
the specific metamodels of the concrete mapping formalisms.

Containment (v,w) Containment, represented by the metaclass Containment, states that the element in
one ontology represents a more specific aspect of the world than the element in the other ontology.
Depending on which of the elements is more specific, the containment relation is defined in the one
or in the other direction. This direction is specified in the metamodel by the attribute direction, which
can be sound (v) or complete (w). If this attribute value is sound, the source element is more specific
element than the target element. In case of the attribute value complete, it is the other way around,
thus the target element is more specific than the source element.

Overlap (o) Overlap, represented by the metaclass Overlap, states that the connected elements represent
different aspects of the world, but have an overlap in some respect. In particular, it states that some
objects described by the element in the one ontology may also be described by the connected element
in the other ontology.

In some approaches, these basic relations are supplemented by their negative counterparts, for which the
metamodel provides an attribute negated for the abstract superclass SemanticRelation. For example, a
negated Overlap relation specifies the disjointness of two elements. The corresponding relations can be
used to describe that two elements are not equivalent (6≡), not contained in each other (6v) or not overlapping
or disjoint respectively (Ø). Adding these negative versions of the relations leaves us with eight semantic
relations that cover all existing proposals for mapping languages.

In addition to the type of semantic relation, an important distinction is whether the mappings are to be
interpreted as extensional or as intensional relationships, specified through the attribute interpretation of the
metaclass SemanticRelation.

Extensional The extension of a concept consists of the things which fall under the concept. In extensional
mapping definitions, the semantic relations are interpreted as set-relations between the sets of objects
represented by elements in the ontologies. Intuitively, elements that are extensionally the same have
to represent the same set of objects.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 55 of 93

Intensional The intension of a concept consists of the qualities or properties which go to make up the
concept. In the case of intensional mappings, the semantic relations relate the concepts directly,
i.e. considering the properties of the concept itself. In particular, if two concepts are intensionally the
same, they refer to exactly the same real world concept.

As mappable elements, the metamodel contains the class OWLEntity that represents an arbitrary part of
an ontology specification. While this already covers many of the existing mapping approaches, there are
a number of proposals for mapping languages that rely on the idea of view-based mappings and use se-
mantic relations between (conjunctive) queries to connect models, which leads to a considerably increased
expressiveness. These queries are represented by the metaclass OntologyQuery. Note that the metamodel
in principle supports all semantic relations for all mappable elements. OCL constraints for specific mapping
formalisms can restrict the combinations of semantic relations and mappable elements.

Queries

A mapping assertion can take a query as mappable element. Figure 4.9 demonstrates the class Query that
reuses constructs from the SWRL metamodel.

Figure 4.9: OWL mapping metamodel: queries

We reuse large parts of the rule metamodel as conceptual rules and queries are of very similar nature [TF05]:
A rule consists of a rule body (antecedent) and rule head (consequent), both of which are conjunctions of
logical atoms. A query can be considered as a special kind of rule with an empty head. The distinguished
variables specify the variables that are returned by the query. Informally, the answer to a query consists of
all variable bindings for which the grounded rule body is logically implied by the ontology. A Query atom also
contains a PredicateSymbol and some, possibly just one, Terms. In the SWRL metamodel, we defined the
permitted predicate symbols through the subclasses Description, DataRange, DataProperty, ObjectProperty
and BuiltIn. Similarly, the different types of terms, Individual, Constant, IndividualVariable and DataVariable
are specified as subclasses of Term. Distinguished variables of a query are differentiated through an associ-
ation between Query and Variable. An OCL constraint a restriction on the use of distinguished variables:

1. A variable can only be a distinguished variable of a query if it is a term of one of the atoms of the query:
self.distinguishedVariables→forAll(v: Variable |
self.queryAtoms→exists(a: Atom | a.atomArguments→exists(v | true)))

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 56 of 93 NeOn Integrated Project EU-IST-027595

4.2.2 OCL Constraints for C-OWL

We define OCL constraints on the common mapping metamodel extension to concretize it according to
the specific formalism C-OWL [BGvH+03]. We list the specific characteristics of C-OWL and introduce the
necessary constraints for them. For each constraint, firstly the context of the constraint, so the class in the
metamodel on which it is to be defined, is defined using the OCL syntax "context classname inv:"7. Some
existing reasoners support only a subset of C-OWL. Additional constraints could be defined to support this.

1. C-OWL does not have unique name assumption. To reflect this in the metamodel, a constraint defines
that the value of the attribute uniqueNameAssumption of the class Mapping is always 'false':
context Mapping inv:
self.uniqueNameAssumption = false

2. C-OWL does not have inconsistency propagation. Similary, a constraint is defined to set the value of
the attribute inconsistencyPropagation of the class Mapping to 'false':
context Mapping inv:
self.inconsistencyPropagation = false

3. The relationship between the connected domains of a mapping in C-OWL is always assumed to
be overlap. A constraint sets the value of the attribute domainAssumption of the class Mapping to
'overlap':
context Mapping inv:
self.domainAssumption = 'overlap'

4. C-OWL does not allow to define mappings between queries. Moreover, only object properties, classes
and individuals are allowed as mappable elements. A constraint defines that any mappable element in
a mapping must be an ObjectProperty, an OWLClass or an Individual :
context MappableElement inv:
self.oclIsTypeOf(ObjectProperty) or
self.oclIsTypeOf(OWLClass) or
self.oclIsTypeOf(Individual)

5. A mapping assertion can only be defined between elements of the same kind. As the previous con-
straint defines that mappings can only be defined between three specific types of elements, an addi-
tional constraint can easily define that when the source element is one of these specific types, then the
target elements must be of that type as well:
context MappingAssertion inv:
(self.sourceElement.oclIsTypeOf(OWLClass) implies
self.targetElement.oclIsTypeOf(OWLClass)) and
(self.sourceElement.oclIsTypeOf(ObjectProperty) implies
self.targetElement.oclIsTypeOf(ObjectProperty)) and
(self.sourceElement.oclIsTypeOf(Individual) implies
self.targetElement.oclIsTypeOf(Individual))

6. As semantic relations in mappings, C-OWL supports equivalence, containment (sound as well as
complete), overlap and negated overlap (called disjoint). A constraint defines this by specifying which
different subclasses of SemanticRelation are allowed. When only the non-negated version of the
semantic relation is allowed, the constraint defines that the attribute negated of the class SemanticRe-
lation is set to 'false':
context SemanticRelation inv:
(self.oclIsTypeOf (Equivalence) and self.negated = false) or

7where 'inv' stands for the constraint type invariant.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 57 of 93

(self.oclIsTypeOf(Containment) and self.negated = false) or
self.oclIsTypeOf(Overlap)

4.2.3 OCL Constraints for DL-Safe Mappings

This section provides OCL constraints on the common metamodel for OWL ontology mappings to concretize
it to the formalism DL-Safe Mappings [HM05]. Again, we highlight the specific characteristics of the language
and provide the appropriate constraints.

1. DL-Safe Mappings do not have unique name assumption. To reflect this in the metamodel, a constraint
defines that the value of the attribute uniqueNameAssumption of the class Mapping is always 'false':
context Mapping inv:
self.uniqueNameAssumption = false

2. DL-Safe Mappings always have inconsistency propagation. A constraint is defined to set the value of
the attribute inconsistencyPropagation of the class Mapping to 'true':
context Mapping inv:
self.inconsistencyPropagation = true

3. The relationship between the connected domains of a DL-Safe Mapping is always assumed to be
equivalence. A constraint sets the value of the attribute domainAssumption of the class Mapping to
'equivalence':
context Mapping inv:
self.domainAssumption = 'equivalence'

4. DL-Safe Mappings support mappings between queries, properties, classes, individuals and datatypes.
A constraint defines that the type of a MappableElement must be one of these subclasses:
context MappableElement inv:
self.oclIsTypeOf(OntologyQuery) or
self.oclIsTypeOf(ObjectProperty) or
self.oclIsTypeOf(DataProperty) or
self.oclIsTypeOf(OWLClass) or
self.oclIsTypeOf(Individual) or
self.oclIsTypeOf(Datatype)

5. In DL-Safe Mappings, elements being mapped to each other must be of the same kind. Thus, when
one wants to map for instance a concept to a query, the concept should be modelled as a query. A
constraint defines that when the source element is of a specific type, the target element must be of the
same type:
context MappingAssertion inv:
(self.sourceElement.oclIsTypeOf(OntologyQuery) implies
self.targetElement.oclIsTypeOf(OntologyQuery)) and
(self.sourceElement.oclIsTypeOf(ObjectProperty) implies
self.targetElement.oclIsTypeOf(ObjectProperty)) and
(self.sourceElement.oclIsTypeOf(DataProperty) implies
self.targetElement.oclIsTypeOf(DataProperty)) and
(self.sourceElement.oclIsTypeOf(OWLClass) implies
self.targetElement.oclIsTypeOf(OWLClass)) and
(self.sourceElement.oclIsTypeOf(Individual) implies
self.targetElement.oclIsTypeOf(Individual)) and
(self.sourceElement.oclIsTypeOf(Datatype) implies
self.targetElement.oclIsTypeOf(Datatype))

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 58 of 93 NeOn Integrated Project EU-IST-027595

6. DL-Safe Mappings specify that queries that are mapped to each other, must contain the same distin-
guished variables. A constraint defines that when both elements are a query, each variable that exists
as distinguished variable in the source element, must exist as distinguished variable in the target ele-
ment:
context MappingAssertion inv:
self.sourceElement.oclIsTypeOf(Query) and
self.targetElement.oclIsTypeOf(Query) implies
self.sourceElement.oclAsType(Query).distinguishedVariables→
forAll(v: Variable | self.targetElement.oclAsType(Query).distinguishedVariables→
exists(v | true))

7. The interpretation of semantic relations in DL-Safe Mappings is always assumed to be extensional. A
constraint defines that the value of the attribute interpretation of the class SemanticRelation must be
set to 'extensional':
context SemanticRelation inv:
self.interpretation = 'extensional'

8. DL-Safe Mappings support the semantic relations equivalence and containment (sound as well as
complete). A constraint specifies this by defining which types SemanticRelation can have and what its
value for the attribute negated should be:
context SemanticRelation inv:
(self.oclIsTypeOf(Equivalence) and self.negated = false) or
(self.oclIsTypeOf(Containment) and self.negated = false)

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 59 of 93

Chapter 5

An integration of EL++ with E-Connections
for Safe Conjunctive Query Answering

Effective knowledge reuse and sharing has been a major goal of the Web Ontology Working Group. Indeed,
as ontologies get larger, they become harder for reasoners to process and for humans to understand. On-
tology reuse can in this case prove very useful, as it allows one to take into account existing knowledge and
link it or integrate it into their knowledge base, without having to construct a large ontology from scratch. The
intuition behind this is that if we think of ontologies as terminological and assertional descriptions of a certain
domain, then we could split the broader ontology into different smaller ontologies that are independent and
self-contained modules and that describe some more specific domain of our application.

Of course, ontology reuse requires that suitable tools should be provided for integrating and connecting
the modular ontologies. The Web Ontology Language (OWL) provides some support for integrating web
ontologies by defining the owl : imports construct, which allows one to include by reference in a knowledge
base the axioms contained in another ontology, published somewhere on the Web and identified by a global
name (a URI). However, this construct is not adequate enough. The most fundamental problem lies in the
fact that it brings into the original ontology all the axioms of the imported one. This prohibits partial reuse
and it results in exclusively syntactical modularity, as opposed to the logical modularity.

One approach that has been thoroughly studied in the last years is that of E-Connections [KLWZ04]. The
E-Connections formalism provides a general framework for combining logical languages that are expressible
as Abstract Description Systems (ADS). The main motivation and contribution is that it combines decidable
logics in such a way that the resulting combined formalism remains decidable, although that can potentially
come at the cost of higher worst-case complexity.

E-Connections in expressive fragments of Description Logics have already been investigated and special ex-
tensions of the tableau calculus have been proposed for the reasoning task of concept satisfiability [GPS04a].
Despite their correctness, their high computational complexity (at least exponential) places an undesired re-
striction to their use in practice. In addition to that, while the subsumption task can be proved very useful for
classifying large ontologies, in the case of ontologies with large ABoxes one is usually much more interested
in query answering, as is also the case with database systems.

To overcome these obstacles, we propose in this Chapter a suitable restriction of the existing theories, which
consists in two directions. First, we do not examine the general problem of E-Connections between ex-
pressive Description Logics, but we instead focus on a very useful tractable fragment of Description Logics,
namely the EL++ family. The selection of EL++ as a candidate tractable knowledge representation formal-
ism is not accidental. Indeed, as demonstrated in [BBL05b], despite its relatively weak expressive power, it
is however sufficient for a number of different applications. We consider that in the context of the Work Pack-
age 7 use case, namely the fisheries ontology, where the terminological knowledge is not complex, choosing
a tractable Description Logic with strong expressivity in practice can reconcile in an effective our need for
expressivity, on the one hand, and for low complexity, on the other.

Second, despite the usefulness of subsumption and satisfiability in traditional reasoning tasks, such as clas-

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 60 of 93 NeOn Integrated Project EU-IST-027595

sification, we choose to concentrate on the task of conjunctive query answering. This is especially useful
for knowledge bases with large data volumes, where we are interested to ask information about the data.
Conjunctive queries are a well-studied family of queries that can capture the user needs in many practical
applications and this is the primary motivation behind our interest in them and are related to Horn-clause
logics and rules. Unfortunately, because of the open-world assumption made in knowledge representation
formalisms, query answering is not even obvious to define, as for instance is the case with database systems,
where the close-world assumption is adopted. Moreover, combining OWL-DL with rules leads to undecidabil-
ity (a very strong intuition why that happens is provided by Motik in [MSS05]). To surmount this difficulty, we
do not consider general conjunctive queries, but only queries with DL-safe variables, as discussed in [HM05].

The current Chapter is structured as follows: we first discuss the tractable family of EL++; we then define E-
Connections between EL++ components and we prove that the resulting system is decidable and, moreover,
that it can be translated into an equivalent EL++ knowledge base, thus showing that it retains its tractability;
in the end, we make use of a recent work that translates ELP knowledge bases into equisatisfiable Datalog
programs, which we use for DL-Safe conjunctive query answering.

5.1 The Description Logic EL++

In Description Logics, a set of atomic concepts NC , a set of atomic roles NR and a set of individual names
NI serve as the building blocks to construct more complex concepts. NC , NR andNI are always considered
(infinitely)countable and pairwise disjoint. The concept constructors that are available in EL++ are the top
concept, the bottom concept, concept conjunction, existential restriction and nominals (concrete domains
are also possible, but we don’t deal with them at this paper, as they can be treated in a similar way). More
formally:

Definition 25 Let NC , NR, NI be countable and pairwise disjoint sets of concept names, role names and
individuals, respectively. The set of concepts is the smallest set such that:

1. It contains the special concepts > (Top) and ⊥ (Bottom).

2. Every concept name A ∈ NC is a concept.

3. If C, D are concepts, R ∈ NR and o ∈ NI , the following are also concepts:

• C uD (Conjunction).

• {o} (Nominals).

• ∃R.C (Existential Restriction).

LetC,D be concepts, then the assertionC v D is called a general concept inclusion axiom (GCI). Moreover,
if r1, ..., rn, R ∈ NR, then the assertion r1 ◦ ... ◦ rn v R is called a role inclusion axiom (RI). An EL++

constraint box (CBox) is a finite set of GCIs and RIs.

The semantics is defined through an interpretation as follows:

Definition 26 An interpretation I is a pair I = (∆I , ·I), where ∆I is a non-empty set, called the interpretation
domain, and ·I is the interpretation function, which maps:

• Each concept name A ∈ NC to a subset AI of ∆I .

• Each role name R ∈ NR to a subset RI of ∆I ×∆I .

The interpretation function can be inductively extended to the aforementioned concept constructors as shown
in Table 5.1.

An interpretation I satisfies the RI r1 ◦ ... ◦ rn v R iff rI1 ◦ ... ◦ rIn ⊆ RI and it satisfies the GCI C v D iff
CI ⊆ DI . The interpretation I is a model of the knowledge base iff it satisfies all the axioms in the CBox.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 61 of 93

Name Syntax Semantics
Top > ∆I

Bottom ⊥ ∅
Conjunction C uD CI ∩DI

Existential ∃R.C {x ∈ ∆I |∃y ∈ ∆I ,
Restriction (x, y) ∈ RI , y ∈ CI}
Nominals {o} {o}I ∈ ∆I

Table 5.1: Concept Constructors in EL++: Syntax and Semantics

The main reasoning task in EL++ is concept subsumption: a concept D is subsumed by concept E w.r.t.
the CBox C and we write D vC E iff DI ⊆ EI for all models I of C. It can be proved that subsumption
is expressive enough to express many interesting reasoning tasks (concept satisfiability, ABox consistency,
instance problem) and vice versa [BBL05a].

A very useful property of any CBox C is that it can be transformed in linear time to its normal form, which is
an equivalent form of the original CBox, in which:

• All GCIs are of the form: C v D, C1 v ∃R.C2, C1 u C2 v D, or ∃R.C v D, where C, C1, C2 ∈
BCC

1 and D ∈ BCC ∪ {⊥},

• All RIs are of the form: r v s, r1 ◦ r2 v s, where r1, r2, r, s are roles.

The following result reveals the tractable nature of subsumption in EL++ [BBL05b]:

Theorem 4 Subsumption in EL++ w.r.t. CBoxes can be decided in polynomial time.

5.2 E-Connections of EL++ Components

5.2.1 Abstract Description Systems

Abstract description systems [KLWZ04] came as a result of the effort to combine different logical formalisms
into a single logical formalism. Examples of the different formalisms include description logics, logics of
topological spaces (e.g. the modal logic S4 extended with the universal modality), logics of metric spaces
that can offer not only qualitative but also quantitative information (e.g. the family MS), and propositional
temporal logics. That actually suggests that the abstract description system formalism is a very expressive
formalism, able to handle quite different kinds of logics, and not restricted just to the DLs field.

The syntax is provided by the abstract description language, which determines the set of terms and asser-
tions. We give a trimmed-down and slightly modified version of it [KLWZ04], which best fits our purpose,
without any affect on the main results.

Definition 27 An abstract description language (ADL) L is described by a countably infinite set V of set
variables, a countably infinite set X of object variables, (possibly infinite) countable setR of relation symbols
R of arity 2 and a countable set F of function symbols f of arity nf , such that ¬,∧ /∈ F . These sets are
pairwise-disjoint.
The terms of tj of L are built in the following way:
tj ::= > | ⊥ | x | t1 ∧ t2 | f(t1, ..., tmf

),
where x ∈ V and f ∈ F .
The term assertions of L are of the form t1 v t2, for all terms t1 and t2, and the object assertions are either
of the form R(a, b), for a, b ∈ X and R ∈ R, or of the form (a : t), for a ∈ X and t a term.

1The set BCC is defined as the smallest set that contains the set NC of concept names, the top concept > and all concept
descriptions of the form {o} appearing in C.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 62 of 93 NeOn Integrated Project EU-IST-027595

As assertions of the ADL we define the sets of term and object assertions.

An abstract description model (ADM) for an ADL L = (V,X ,R,F) is a structure of the form
M = 〈W,VM = (xM)x∈V ,XM = (aM)a∈X ,FM = (fM)f∈F ,RM = (RM)R∈R〉,
where W is a non-empty set, xM ⊆ W , aM ∈ W , each fM is a function mapping nf -tuples 〈X1, ..., Xnf

〉
of subsets of W to a subset of W , and the RM are mR-ary relations on W . The value tM ⊆W of an L-term
t in M is defined inductively by taking

• >M = W and ⊥M = ∅,

• (t1 ∧ t2)M = tM1 ∩ tM2 , and

• (f(t1, ..., tmf
))M = fM(tM1 , ..., t

M
mf

).

The truth-relation M |= ϕ for an assertion ϕ is defined as follows:

• M |= R(a1, ..., amR) iff RM(aM
1 , ..., a

M
mR

),

• M |= a : t iff aM ∈ tM,

• M |= t1 v t2 iff tM1 ⊆ tM2 .

In this case we say that the assertion ϕ is satisfied in M. For sets Γ of assertions, we write M |= Γ if M |= ϕ
for all ϕ ∈ Γ.

We now define an ADS as a pair of an ADL and a class of ADMs.

Definition 28 An abstract description system is a pair (L,M), where L is an ADL andM is a class of ADMs
for L that is closed under the following operations:

• if M = 〈W,VM,XM,FM,RM〉 is inM and VM′
= (xM′

)x∈V is a new assignment of set variables in
W then M′ = 〈W,VM′

,XM,FM,RM〉 ∈ M.

• for every finite G ⊆ F , there exists a finite set XG ⊆ X such that, for every M =
〈W,VM,XM,FM,RM〉 from M and every assignment XM′

= (aM′
)a∈X of object variables in W

such that aM = aM′
for all a ∈ XG , there is an interpretation FM′

= (fM′
)f∈F of the function symbols

such that fM′
= fM for all f ∈ G and M′ = 〈W,VM,XM′

,FM′
,RM〉 ∈ M.

What the closure condition suggests is that the set variables can be interpreted as arbitrary sets of the
interpretation domain, so they are treated as variables in any ADS, while the interpretation of the function
symbols remains the same. That is a property that all DLs comply with.

The main reasoning task for an ADS is the satisfiability problem for finite sets of term assertions.

Definition 29 Let S = (L,M) be an ADS. A finite set Γ of term assertions is called satisfiable in S if there
exists an ADM M ∈M such that M |= Γ.

The next proposition states the correspondence between the DL EL++ and the notion of ADSs. The detailed
proof for EL++ and even more expressive description logics can be found in [KLWZ04, BLSW02].

Proposition 1 The Description Logic EL++ corresponds to an ADS.

Proof 1 A formal proof for more expressive DLs can be found at [KLWZ04, BLSW02]. Here we only provide
a simplification of the original proof suited to EL++.

First, we translate the syntax of the EL++ to the corresponding ADL L.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 63 of 93

• Every atomic concept A ∈ NC can be associated with a set variable xA in L.

• The top concept > is translated to the fixed set variable x>, while the bottom concept ⊥ to the fixed
set variable x⊥.

• Every individual name i in EL++ can be treated as an object variable ai in L.

• The set of relation symbols of L is exactly the set of role name R ∈ NR in EL++.

• The set of function symbols of L is the smallest set, that:

1. for every role R ∈ R, it contains the unary function symbol f∃R, and

2. for every o that belongs to the set of nominals, it contains a function symbol fo of arity 0.

Conjunction between EL++ concepts can be straightforwardly translated to conjunction between the corre-
sponding terms in L. Indeed, CuD in EL++ is regarded as tC∧tD in L. Moreover, EL++ GCIs correspond
to L-term assertions, while object assertions correspond to ABox assertions in the EL++.

Second, we proceed with the definition of the classM of ADMs for the language L that we just described.
For this purpose, for every EL++-model I = 〈∆, AI1, ..., RI1, ..., aI1, ...〉, the classM contains the model

M = 〈W,VM,XM,FM,RM〉,

where for every concept name A ∈ NA, role name R ∈ NR, and every object name o:

• xM
A = AI , x> = W , and x⊥ = ∅

• oM = aI ,

• RM = RI ,

• fM
o = {oM}, and

• fM
∃R(X) = {w ∈ ∆ | ∃u((w, u) ∈ RI ∧ u ∈ X)}.

Concept interpretations can be changed arbitrarily, so closure condition (1) of Definition 28 is satisfied. Clo-
sure condition (2) is also satisfied. Indeed, consider a finite subset G of F and let XG denote the finite set
of object variables o for which the nullary function fo ∈ G. Then, for any new assignment of the object
variables in X −XG , the new interpretation of the function symbols not occurring in G consists in interpreting
every nominal fo, a ∈ X − XG , as the singleton set containing the object newly assigned to a, while the
interpretation of the rest of the function symbols remains the same as before.

Thus the pair (L,M) indeed corresponds to an ADS.

5.2.2 E-Connections in Abstract Description Systems

So far, we have provided the framework of ADSs which enables us to translate very different formalisms into
the fore mentioned abstract formalisms. On the other hand, our main interest resides in the ability to establish
general form link relations between the components of the system. This is accomplished by E-Connections,
which can be viewed as the combination of the system components.

The E-Connection CE(S1, ..., Sn) of n ADSs S1, ..., Sn, where Si = (Li,Mi) with 1 ≤ i ≤ n, contains a set
of terms and a set of assertions both partitioned into n sets, and is interpreted by a class of models.

We define the i-terms inductively:

• every set variable of Li is an i-term,

• the set of i-terms is closed under ¬,∧ and the function symbols of Li,

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 64 of 93 NeOn Integrated Project EU-IST-027595

• if (t1, ..., ti−1, ti+1, ..., tn) is a sequence of k-terms tk for k 6= i, then
〈Ej〉i(t1, ..., ti−1, ti+1, , tn) is an i-term, for every j ∈ J .

Apart from the term and object assertions that we mentioned before, a new kind of assertion, the link asser-
tion, is now defined, offering the ability to establish connections between the various components. All of them
together form the set of assertions of the E-Connection, and a finite set of assertions is called a knowledge
base of the E-Connection. Formally, for 1 ≤ i ≤ n:

• the i-term assertions are of the form t1 v t2, where both t1 and t2 are i-terms,

• the i-object assertions are of the form a : t or R(a1, ..., amR), where a and a1, ..., amR are object
variables of Li, t is an i-term, and R is a relation symbol of Li,

• the link assertions are of the form (a1, ..., an) : Ej , where the ai are object variables of Li, 1 ≤ i ≤ n,
and j ∈ J .

The semantics of CE(S1, ..., Sn) is given through the structure M = 〈(Mi)i≤n, EM = (EM
j)j∈J〉, where

Mi ∈ Mi for 1 ≤ i ≤ n and EM
j ⊆ W1 × · · · ×Wn for each j ∈ J . This structure is called a model

for CE(S1, ..., Sn). The extension tM ⊆ Wi of an i-term t is defined by induction. For set variables X of
Li we put XM = XMi , while the inductive steps for the Booleans and function symbols are the same as in
Definition 27. Moreover, if ti = (t1, ..., ti−1, ti+1, ..., tn) is a sequence of j-terms tj , with 1 ≤ j ≤ n ∧ j 6= i,
then: (〈Ej〉i(ti))M = x ∈Wi | ∃l 6=ixl ∈ tMl (x1, ..., xi−1, x, xi+1, ..., xn) ∈ EM

j .

The truth-relation and the satisfiability of a set of assertions is defined as in previous section. The following
theorem is the fundamental transfer result proved by Kutz, Lutz, Wolter and Zakharyaschev:

Theorem 5 Let CE(S1, ..., Sn) be an E-Connection of ADSs S1, ..., Sn. If the satisfiability problem for each
of S1, ..., Sn is decidable, then it is decidable for CE(S1, ..., Sn) as well.

From the theorem above and the proposition 1, the following corollary immediately follows:

Corollary 1 The satisfiability problem for the E-Connection CE(S1, ..., Sn) of the EL++ DLs S1, ..., Sn is
decidable.

Practical E-Connections Instead of using n-ary E-Connections which involve all system components,
it is a common practice to consider a trimmed-down version of them, namely only binary E-Connections
[BCH06b]. Apparently, the restricted version is a subcase of the more general n-ary version, where the
arguments of the n-ary E-Connection that do not participate in the binary E-Connection are just replaced by
their respective top concepts. The simplified version is nevertheless somehow more natural, since it actually
constitutes an extension of the traditional binary role to a binary "super"-role, which, contrary to the common
role, connects individuals of components with disjoint domains. Throughout the paper we will only consider
this simplifies version of E-Connections.

5.3 Translating the E-Connection of EL++ Components into an Equivalent
EL++ Knowledge Base

We will follow the approach suggested in [BS03], modifying it whenever needed. This approach builds an
equivalent global DL, which encodes the information that is available in the different EL++ knowledge bases
and in their corresponding E-Connections.

In this direction, let us first think of n EL++ Description Logics, namely EL1, ..., ELn. As stated before,
every EL++ CBox can be written to its equivalent normal form, which contains conjunction, nominals and
existential quantification as concept constructors and role composition as the sole role constructor. No

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 65 of 93

interaction exists between the various CBoxes, so the transformation process is expected to proceed as
usual for each CBox, yielding to n equivalent normal forms. Contrary to that, let’s now consider the E-
Connection CE(EL1, ..., ELn), which additionally provides linking mechanisms, which have the form of an
existential restriction, with the difference that the domain and range of it are now disjoint. This additional
feature introduces interaction between the components, so one cannot just proceed with transforming each
component into its equivalent form, since it is expected that each component is potentially dependent on
other components, too.

In order to overcome this obstacle, we will try to build a new EL++ CBox corresponding to an equiva-
lent global knowledge base KBG, in the sense that a concept is subsumed by another concept in the
E-Connection CE(EL1, ..., ELn) if and only if the subsumption holds in the global constructed CBox. Such
a global knowledge base mirrors in reality an integration of the different system components, by encoding
the information that is available in the E-Connected System.

Building the knowledge base KBG requires first specifying a language LG, which will provide us with the
ability to explicitly state which roles and concepts belong to which component (the link does not belong to
one specific component, since it connects different ones). So, if t an atomic concept (or an atomic role) of
component i, LG will contain the atomic concept (or atomic role) i : t. The language of the global system
is equipped with the same set of concept, role and link constructors as each EL++ component, therefore
it can express (at least) the same complex descriptions that are allows in the individual parts. LG can
additionally express the concepts ANY THING and NOTHING, which refer to the global domain of the
integrated system. In order to be able to express the local domain and range restrictions for concepts and
roles belonging to the i-th component, we introduce besides the global ANY THING and NOTHING
the concepts Topi and Boti that refer to the local domain of the i-th component. Out of technical reasons
that will be made clear later LG also contains a special role symbol P̂ .

After having defined the global language LD, we proceed with (1) the translation of the concept and role
descriptions in each component, and (2) the translation of the whole CBox of each component, that contains
general concept inclusions and role inclusions. (1) is quite straightforward and is based on the recursive
definition of the concept and role descriptions, while (2) needs the introduction of extra conditions that guar-
antee that the integrated system respects a number of constraints. We mention that instead of writing the
translation for every single constructor, we represent every constructor as a function with k arguments and
we provide a uniform translation for all of them in the spirit of [BS03].

The translation of the concept and role descriptions is as follows:

1. #(i,M) = i : M for atomic concepts and roles M, including the top and bottom concepts ANYTHING
and NOTHING respectively.

2. #(i, {o}) = {i : o}.

3. #(i, C uD) = #(i, C) u#(i,D).

4. #(i,∃R.C) = ∃#(i, R).#(i, C) for existential restrictions.

5. #(i,∃E.C) = ∃#(i, E).#(j, C) for link restrictions E ∈ Eij .

6. #(i, r1 ◦ · · · ◦ rn) = #(i, r1) ◦ · · · ◦#(i, rn).

The global CBox #(T) of the E-Connection CE(DL1, ..., DLn) will then consist of the following axioms:

1. General Concept Inclusion Axioms.

#(i, A) v #(i, B) for all i-term assertions A v B in DLi.

2. Force the bottom concept of every component to be interpreted as the empty set.

Boti v NOTHING

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 66 of 93 NeOn Integrated Project EU-IST-027595

3. Force every atomic concept (basis) to be subsumed by the top concept of the corresponding compo-
nent.

i : A v Topi, for every atomic concept A of DLi.

4. Force every nominal to be subsumed by the top concept of the corresponding component.

{i : o} v Topi, for every nominal o of DLi.

5. Declare that the top concept of each component must be interpreted by a non-empty set. P̂ is an
auxiliary role, whose interpretation does not matter after all.

ANY THING v ∃P̂ .T opi

6. (1) Force the range of any role to be subsumed by the top concept of the corresponding component.

Normally, in order to express that restriction we would write Topi v ∀(i : p).(Topi) for every role
p of DLi. The universal constructor is unfortunately not in EL++. The only way to express this
restriction is to introduce the constructor range(p) that denotes the range of a role and then restrict it
through proper inclusion axioms. While this seems quite "innocent", the interaction of general form role
inclusions and range restrictions can lead to undecidability, let alone tractability [BBL08]. In our case,
the role inclusions have all the very nice property that all roles that participate in a role inclusion axiom
have as range the corresponding local top concept and according to [BBL08] this syntactical restriction
of the role ranges guarantees decidability and tractability of EL++. Without entering into any details,
we just mention that since every concept is restricted to range over the local top concept and the same
holds for the roles, it is possible to omit this axiom.

(2) Force the domain of any role to be subsumed by the top concept of the corresponding component.

∃(i : p).ANY THING v Topi

7. (1) Force the range of any link to be subsumed by the top concept of the component of the second
argument.

As before, we omit including the range axiom (again, for details [BBL08]).

(2) Force the domain of any link to be subsumed by the top concept of the component of the first
argument.

∃E.ANY THING v Topi

The main result is provided by the following theorem:

Theorem 6 Let us consider an E-Connection CE(DL1, ..., DLn) of the EL++ DLs DL1, ..., DLn with only
term assertions and the corresponding translated global Description Logic #(T). Then
#(T) |= #(i,X) v #(i, Y) iff
CE(DL1, ..., DLn) |= i : X v Y .

Proof 2 Main idea

It is quite easy to see that the class of models of the E-Connected EL++ ontologies and the class of models
of the translated combined knowledge base are actually isomorphic. This is enough to prove the claim.
[CK07, BS03]

5.4 DL-Safe Query Answering in the EL++ E-Connection

5.4.1 Translating the E-Connection into Datalog

The work in [KRH08] presents a reasoning algorithm for ELP based on a polynomial translation from ELP to
a specific kind of Datalog programs that can be evaluated in polynomial time. ELP is in a fact a decidable

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 67 of 93

fragment of the Semantic Web Rule Language that is based on the tractable description logic EL++, and
encompasses an extended notion of the DL Rules for that logic. Thus ELP extends EL++ with a number of
features introduced by the forthcoming OWL (such as disjoint roles, local reflexivity, certain range restrictions,
and the universal role).

In the context of the current Chapter, we will not pay attention to the interesting details of this work, but we will
rather make use of the proposed transformation/reduction to Datalog, in order to use it as an indispensable
step in our algorithm for conjunctive query answering that will be presented in the subsequent Section 5.4.3.

Indeed, the translation described in the previous section results in an equisatisfiable EL++ global knowledge
base. On the other hand, every knowledge base can be transformed into an equisatisfiable datalog program
by the procedure described in [KRH08]. In the end, satisfiability of the E-Connection is reduced to satisfiability
in the global knowledge base, which in turn is reduced to satisfiability in the produced datalog program.

5.4.2 DL-Safe Query Answering

Conjunctive queries over an EL++ knowledge base are defined as follows [HM05]:

Definition 30 Let KB be an EL++ knowledge base, and let Np be a set of predicate symbols, such that all
EL++ concepts and all abstract and concrete roles are in NP . An atom has the form P (s1, ..., sn), denoted
also as P (s), where P ∈ NP , and si are either variables or individuals from KB. An atom is called ground
atom, if it is variable-free. An atom is called a DL-atom if P is a EL++ concept, or an abstract or a concrete
role. Let x1, ..., xn and y1, ..., ym be sets of distinguished and non-distinguished variables denoted also as x
and y, respectively. A conjunctive query over KB, written as Q(x,y), is a conjunction of atoms ∧Pi(si), where
all si together exactly contain x and y. A conjunctive query Q(x,y) is DL-safe if each variable occurring in a
DL-atom also occurs in a non-DL atom in Q(x,y). The translation of such a query into a first order formula
is:

π(Q(x,y)) = ∃y :
∧
π(Pi(si))

For Q1(x,y1) and Q2(x,y2) conjunctive queries, a query containment axiom Q2(x,y2) v Q1(x,y1) has
the following semantics:

π(Q2(x,y2) v Q1(x,y1)) = ∀x : π(Q1(x,y1)← Q2(x,y2))

The main inferences for conjunctive queries are:

• Query Answering. An answer of a conjunctive query Q(x,y) w.r.t. KB is an assignment θ of individuals
to distinguished variables, such that π(KB) |= π(Q(xθ), y).

• Checking query containment. A query Q2(x,y2) is contained in a query Q1(x,y1) w.r.t. KB, if
π(KB) |= π(Q2(x,y2) v Q1(x,y1)).

In practice, the DL-safety of the variables that appear inside DL-atoms can be guaranteed either by intro-
ducing a new predicate that enforces all variables to belong to the known individuals or we can relax the
restrictions introduced by DL-safety, by eliminating non-distinguished variables through a reduction of tree-
like parts of a query to a concept [HT02].

First, we define the so-called tree-like parts of a query:

Definition 31 For a set of unary and binary literals S, the coincidence graph of S is a directed graph with
the following structure:

• Each variable from S is associated with a unique node.

• Each occurrence of a constant n S is associated with a unique node, i.e.occurrences of the same
constant are associated with distinct nodes.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 68 of 93 NeOn Integrated Project EU-IST-027595

• For each literal C(s) ∈ S, the node s is labeled with C.

• For each literal R(s, t) ∈ S, the nodes s and t are connected with a directed arc labeled R.

The subset Γ of DL-atoms of a conjunctive query Q(x,y) is called a tree-like part of Q(x,y) with a root s if

• no variable from Γ occurs in Q(x,y) Γ,

• the coincidence graph of Γ is a connected tree with a root s,

• all nodes apart from s are non-distinguished variables of Q(x,y).

The reason why we need these tree-like parts is that using the query roll-up technique from [HT02], we
can eliminate non-distinguished variables by reducing a tree-like part of a query to a concept, without losing
semantic consequences.

5.4.3 Algorithm for Conjunctive Query Answering

In this section we will present an outline of the algorithm for conjunctive query answering in the combined
EL++ knowledge base, which borrows its main ideas form the work described in [HM05]. The algorithm
is depicted in Figure 5.1 takes as input: 1) a set of EL++ knowledge bases, which are connected with
E-Connections, and 2) a conjunctive query Q(x,y). The algorithms then produces an equivalent knowl-
edge base, according to the theory described in Section 5.3. The new combined knowledge base is then
transformed and reduced into an equisatisfiable Datalog program, as we explained in Section 5.4.1, and this
reduction has polynomial time complexity.

After this initial phase, the algorithm eliminates non-distinguished variables from Q(x,y) using the query
roll-up technique that we mentioned in Section 5.4.2. After roll-up, the obtained mappings and queries are
required to be DL-Safe to ensure decidable query answering. If this precondition is fulfilled, then the original
query in answered in the obtained above Datalog program. By our previous discussion, it is straightforward
to see that the algorithm exactly computes the answer of Q(x,y) in the original E-Connected ontologies.

Input
EL1, ..., ELn: n knowledge bases in EL++ combined with E-Connections
Q(x,y): the conjunctive query

Algorithm
1: Transform the EL1, ..., ELn knowledge system into the equivalent ELequiv knowledge base
2: Transform ELequiv into the equivalent datalog program DD
3: Roll-up tree-like parts of query Q(x,y)
4: Stop if Q(x,y) is not DL-Safe
5: Compute the answer of Q(x,y) in DD

Figure 5.1: Algorithm for Conjunctive Query Answering.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 69 of 93

Chapter 6

Reasoning with Integrated Distributed
Description Logics

In this chapter, we focus on the IDDL formalism and an algorithm for reasoning on modular ontologies with
the IDDL semantics. In addition, we show how it can be efficiently implemented in an IDDL reasoner thanks
to some optimization techniques.

6.1 Motivation

Reasoning on a network of multiple ontologies can be achieved by integration of several knowledge bases
or by using non standard distributed logic formalisms. With the first, knowledge must be translated into
a common logic, and reasoning is fully centralized. The second option, which has been chosen for Dis-
tributed Description Logics (DDL) [BS03], E-connections [KLWZ04], Package-based Description Logics (P-
DL) [BCH06b] or [Len02] consists in defining new formalisms which allow reasoning with multiple domains in
a distributed way. The non-standard semantics of these formalisms reduces conflicts between ontologies, but
they do not adequately formalize the quite common case of ontologies related with ontology alignments pro-
duced by third party ontology matchers. Indeed, these formalisms assert cross-ontology correspondences
(bridge rules, links or imports) from one ontology’s point of view, while often, such correspondences are
expressed from a point of view that encompasses both aligned ontologies. Consequently, correspondences,
being tied to one "context", are not transitive, and therefore, alignments cannot be composed in these lan-
guages.

IDDL addresses this situation and offer sound alignment composition. The principle behind it was pre-
sented in [ZE06] under the name integrated distributed semantics, and particularized for Description Logics
in [Zim07]. This chapter aims at providing a distributed reasoning procedure for IDDL, which has the following
interesting characteristics:

• the distributed process takes advantage of existing DL reasoners (e.g. Pellet, Racer, FacT++ etc.);
• local ontologies are encapsulated in the local reasoning system, so it is not necessary to access the

content of the ontologies in order to determine the consistency of the overall system i.e. it is sufficient
that local reasoners provide results about the consistency of local ontologies;

• the expressiveness of local ontologies is not limited as long as it is a decidable description logic.

Regarding two notions of distributed ontologies and distributed reasoning which are discussed in Section
1.2, one can consider that IDDL supports the approach, namely centralized integration. The reason is that
an IDDL system considers not only local ontologies but also mappings between them as independent knowl-
edge pieces. From this underlying conception, a reasoning procedure for IDDL would rely on one global
reasoner and several local reasoners. The global reasoner deals with knowledge from ontology mappings
and gets consistency results from each local reasoner without knowing details about formalisms used in local

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 70 of 93 NeOn Integrated Project EU-IST-027595

ontologies. This feature of IDDL-based systems is very different from those based on DDL, P-DL, etc. in
which a reasoner decides local consistency by taking into account knowledge propagated from other ontolo-
gies through mappings. This difference is originated from the absence of global consistency notion from the
mentioned formalisms which do not seem to focus on mappings.

In term of computation complexity, global consistency (and inconsistency) is basically harder than local con-
sistency (inconsistency) since the former requires to check each model of mappings against all local ontolo-
gies.

6.2 Formalism

This section reminds some essential points of IDDL which was presented in Deliverable 1.1.3. for formalizing
ontology modules.

6.2.1 Semantics of the local content of modules

Interpreting the local content of a module is equivalent to interpreting axioms of a non-modular ontologies.
Since the formalism used to write axioms in our module framework is based on OWL, this local semantics
corresponds to a description logic semantics.

Definition 32 (Interpretation) Given a set of ontology elements Elem (individuals, classes and properties),
an INTERPRETATION of Elem is a pair 〈∆, [[.]]〉, where

∆ is a non-empty set, called the DOMAIN,

[[.]] is a function from Elem to ∆ ∪ P(∆) ∪ P(∆×∆), where P(x) is the part set of x.

In our specific case (considering OWL), the function [[.]] maps

• an individual a to an element of ∆: [[A]] ∈ ∆

• a class C to a subset of ∆: [[C]] ⊆ ∆

• a property p to a binary relation between elements of ∆: [[p]] ⊆ ∆×∆

In fact, an interpretation of the named elements Nam, uniquely defines an interpretation of the ontology
elements by applying inductive interpretation rules:

• [[C uD]] = [[C]] ∩ [[D]],

• [[C tD]] = [[C]] ∪ [[D]],

• [[∃R.C]] = {x|∃y.y∈ [[C]] ∧ 〈x, y〉∈ [[R]]},

• etc.

Interpretations are related to axioms thanks to the satisfaction relation |=.

Definition 33 (Satisfaction) An interpretation 〈∆, [[.]]〉 satisfies:

• an axiom C v D if [[C]] v [[D]]

• an axiom C(a) if [[a]] ∈ [[C]]

• an axiom p(a,b) if ([[a]], [[a]]) ∈ [[p]]

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 71 of 93

If an interpretation I satisfies an axiom α, it is denoted by I |= α.

The local content of a module is characterized by a set of axioms.

Definition 34 An interpretation is a model of a set of axioms O if it satisfies all the axioms in O. The set of
models of a set of axioms O is denoted Mod(O).

6.2.2 Satisfied mapping

A mapping connects entities from 2 different ontologies or modules. Interpreting them implies interrelating
both ontology (or module) interpretations.

Entities appearing in a correspondence can be interpreted according to the ontology language semantics.
Since each ontology may be interpreted in different domains, we define a notion of equalizing function which
helps making these domains commensurate.

Definition 35 (Equalizing function) Let Ω be a set of ontologies and for all O ∈ Ω, IO = 〈∆O, [[.]]O〉 be an
interpretation of O. An equalizing function ε for (IO)O∈Ω assigns to each o a function εO : ∆O → ∆ to a
common global domain of interpretation ∆.

Besides, the mapping language defines a set of relation symbols that are used to express relations between
ontology entities. The interpretation of such relation is defined by the mapping language semantics, accord-
ing to the global domain of interpretation. More precisely, each relation symbol r ∈ R and each global
domain ∆ is associated to a binary relation r∆ ⊆ ∆×∆.

In this deliverable, the mapping language is characterized by the relation symbols R = {v,w,≡,⊥, 6v, 6w
, 6≡, 6 ⊥}. The binary relations associated to them are: set inclusion r∆ = {(X,Y) ∈ ∆ × ∆ | X ⊆ Y },
set containment r∆ = {(X,Y) ∈ ∆ ×∆ | X ⊇ Y }, set equality r∆ = {(X,Y) ∈ ∆ ×∆ | X = Y }, set
disjunction r∆ = {(X,Y) ∈ ∆×∆ | X ∩ Y = ∅}, and their complements.

Using these notions, we can determine whether a correspondence is satisfied by the interpretations of the
mapped ontologies.

Definition 36 (Satisfied correspondence) Let c = 〈e1, e2, r〉 be a correspondence in a mapping between
O1 and O2. A correspondence is satisfied by two interpretations I1 = 〈∆1, [[.]]1〉 and I2 = 〈∆2, [[.]]2〉 of
O1 and O2 respectively, if there exists an equalizing function ε for (I1, I2) over global domain ∆ such that
(ε1([[e1]]1), ε2([[e2]]2)) ∈ r∆. This is written I1, I2 |=ε c.

For instance, consider the correspondence c = 〈Cottage1, Building2,v〉, then I1, I2 |= c iff
ε1([[Cottage1]]) ⊆ ε2([[Building1]]).

Definition 37 (Satisfied mapping) A mapping A of ontologies O1 and O2 is satisfied by a pair of interpre-
tations 〈I1, I2〉 if there exists an equalizing function ε of 〈I1, I2〉 such that for each c ∈ A, I1, I2 |=ε c.

Note that a mapping can be satisfied by interpretations that are not themselves models of the local ontolo-
gies. This is useful when one needs to determine consistency of a mapping, but do not have access to
the ontologies. Moreover, this also ensures encapsulation at the mapping level, since it prevents mapping
satisfiability to be dependent on a particular ontology implementation.

6.2.3 Global interpretation of modules

The interpretation of a module is recursively defined in function of the interpretations of its imported modules.

This recursive definition assumes that there is no cycle in the import chain, so each chain eventually leads to
a base module with no import. Detection of cycles should be syntactically checked, since this definition is not

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 72 of 93 NeOn Integrated Project EU-IST-027595

well founded otherwise. If one thinks in term of software engineering, this is not a major limitation. Indeed,
when a new module is designed, it has to import existing modules. This way, it is not possible to have cyclic
references.

Definition 38 (Base module interpretation) Let M = 〈∅, ∅, ∅, O,E〉 be a base module. An interpretation
of M is a local interpretation I of the content O of M, with domain of interpretation D.

A module interpretation is defined recursively according to the import chain.

Definition 39 (Module interpretation) Let M = 〈M, I,A,O,E〉 be a module. An interpretation of M is a
triple I = 〈I, (Im)m∈M , ε〉 such that:

• For each imported module m ∈ M , Im is a module interpretation of m over domain of interpretation
Dm;

• ε is an equalizing function for (Im)m∈M , over a global domain of interpretation ∆;

• I = 〈∆, [[.]]〉 is a (local) interpretation of the content O of M, with domain of interpretation ∆. ∆ is
also called the domain of interpretation of module M;

• the interpretation of the imported terms tm ∈ Im of module m ∈M is defined by [[tm]] = εm([[tm]]m).

In order for an interpretation to satisfy a module, there are three conditions:

1. the local interpretation must be a model of the content of the module, i.e., all local axioms must be
satisfied;

2. the imported modules must be satisfied by their respective interpretations;

3. the mappings between the imports must be satisfied by the respective pairs of interpretations;

Definition 40 (Model of a module) Let M = 〈M, I,A,O,E〉 be a module and I = 〈I, (Im)m∈M , ε〉 a
module interpretation of M. I is a model of M (written I |= M) iff:

• for each imported module m ∈M , Im |= m (i.e., each imported module is locally satisfied);

• I is a model of O (i.e., the local content of M is satisfied);

• for each pair of modules m,m′ ∈M , Im, Im′ |= Am,m′ (i.e., all mappings are satisfied).

The set of all the models of a module M is written Mod(M) too.

The notion of models is essential for automatic deduction in modular ontologies. It serves to define which
formulas are semantic consequences of a module (i.e., entailment).

6.2.4 Consequences of a module

In order to reason with modular ontologies, we have to define what are the semantic consequences of a
module. They are defined as follows:

Definition 41 (Consequences of a module) Let M = 〈M, I,A,O,E〉 be a module. Let δ be an axiom
built upon the signature of the content of M (which includes the import interfaces of I). δ is a consequence
of M, written M |= δ iff for all 〈I, (Im)m∈M , ε〉 ∈ Mod(M), I |= δ.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 73 of 93

Obviously, if a formula is a consequence of the content ontology of a module, then it is a consequence of
the module itself.1 Additionally, it is desirable to derive knowledge about the imported terms according to the
imported modules knowledge. However, if something is true about a concept C in a module, it is not neces-
sarily true in another module that imports C. For instance, in a description logic knowledge base, if a module
m is such that m |= ¬C v D, it does not follow that, considering a module M = 〈{m}, {C,D}, ∅, ∅, ∅〉,
M |= ¬C v D, as the domains of interpretation of M and m may not be the same.

In order to characterize formulas that can be propagated from a module to its importers, we define a general
notion of locality, inspired by [GHKS07]. A formula is semantically local when its satisfiability in a module
implies its satisfiability in a module that imports its terms.

Definition 42 (Semantic locality) Let m be a module. Let α be a formula written in terms of the export
interface. α is semantically local iff for all modules M that uses m and import the terms of α:

m |= α −→M |= α

A module m is semantically local iff all its axioms are local.

As seen in [GHKS07], locality can be computationally checked in the description logic SHOIQ. Semantic
locality is clearly a desirable property to design “safe” modules. Indeed, in a semantically local module, what
is true of a term in the module, is also true in a module that imports it.

6.3 The IDDL Reasoner for Ontology Modules

The IDDL reasoner checks the consistency of a distributed modular ontology. This section briefly presents the
principle of the algorithm and its implementation for a reduced IDDL system which does not allow disjointness
correspondences to occur in mappings (or alignments). This restriction does not lead to a serious drawback
of the expressiveness since alignments generated by the majority of matching algorithms do not often include
disjointness correspondences.

6.3.1 Algorithm and Optimization

The algorithm is based on [ZD08] which provides much more details about it. However, the vocabulary used
in [ZD08] differs from the one used here. According to the metamodel, wherever ontology is used in [ZD08],
we can replace it by module without loss of correctness. Where alignment is used in [ZD08], we use mapping
here. Finally, a correspondence in [ZD08] is the equivalent of a mapping assertion here.

Preliminary assumption

The IDDL reasoner works by having a module reasoner communicate with imported modules’ reasoners.
The imported modules reasoners are supposed to be encapsulated so that their implementation is un-
known but they can be used via an interface. Consequently, for each imported module mi, we assume
that there exists an oracle Fi which takes a set of DL axioms Ai as arguments and returns a boolean equal
to Consistency(mi ∪Ai).

Definition 43 (Reasoning oracle) Let O be an ontology defined in a logic L. A reasoning oracle is a
boolean function F : PL → Bool which returns F (A) = ConsistencyL(O ∪ A), for all sets of axioms
A ∈ PL.

1Note that only the consequences related to the exported terms are useful to an external module that imports them.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 74 of 93 NeOn Integrated Project EU-IST-027595

The term ontology in Definition 43 is to be taken in a general sense. It can be a module or even a distributed
system, as long as the associated reasoner can interpret DL axioms and offers correct and complete reason-
ing capabilities. In practice, such oracles will be implemented as an interface which encapsulates a reasoner
like Pellet, Fact++, or a module reasoner.

A module reasoner must call the oracles associated with the imported modules with well chosen axioms in
order to determine consistency. The choice of axioms will be explained below. In addition, the module rea-
soner have access to the mappings that may exist between imported modules. From the importing module’s
point of view, these mappings are treated like local axioms. Therefore, we can consider that the mappings
are equivalent to an ontology (called the alignment ontology in [ZD08]).

Definition 44 (Alignment ontology) Let A be a set of mappings. The alignment ontology is an ontology Â
such that:

• for each mapping assertion i :C v←→ j :D with C and D local concepts,

– î :C and î :D;

– î :C v î :D ∈ Â;

• for each mapping assertion i :P v←→ j :Q with P and Q local roles,

– î :P and î :Q;

– î :P v î :Q ∈ Â.

In order to check the global consistency of the module, we also assume that there is a reasoning oracle FA
associated to Â. The algorithm consists in questioning all the reasoning oracles with well chosen axioms
that are detailed just below.

Algorithm

In [ZD08], it is formally proven that consistency checking of an IDDL system with only subsumption mapping
assertions can be reduced to determining the emptiness and non emptiness of specific concepts. More
precisely, we define the notion of configuration, which serves to explicitly separate concepts between empty
concepts and not empty concepts, among a given set of concepts. It can be represented by a subset of the
given set of concepts, which contains the asserted non-empty concepts.

Definition 45 (Configuration) Let C be a set of concepts. A configuration Ω over C is a subset of C .

In principle, a configuration Ω implicitly assert that for all C ∈ Ω, C v ⊥ and for all C /∈ Ω, C(a) for some
individual a. A similar notion of role configuration is also defined in [ZD08], but for the sake of simplicity we
will only present it for concepts.

The algorithm then consists in choosing a configuration over the set of all concepts of the alignment ontology.
The axioms associated with the configuration are then sent to the oracles to verify the consistency of the
resulting ontologies. If they all return true (i.e., they are all consistency with these additional axioms) then the
modular ontology is consistent. Otherwise, another configuration must be chosen. If all configurations have
been tested negatively, the modular ontology is inconsistent, according to the proof in [ZD08]. Since there is
a finite number of configurations, this algorithm is correct and complete.

The sets of axioms that must be used to query the oracles are defined according to a configuration Ω as
follows.
Let A (resp. A1, . . . , An) be the sets of axioms associated with the oracles of the alignment ontology (resp.
with the oracle of modules m1, . . . ,mn).
For all imported modules mi,

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 75 of 93

. . .
. . .

. . .

Ck
Ck+1

Ck+2

Ck+3

Ck+4

Ck+5

Ck v ⊥ Ck(a)}

at most 2n

Figure 6.1: At each node, the left branch indicates that the concept Ck is asserted as an empty concept
(Ck v ⊥), while the right branch indicates a non empty concept (Ck(a)}). The thick path indicates a
possible configuration for the distributed system.

• for all concepts i :C ∈ Ω, î :C(a) ∈ A and C(aC) ∈ Ai where a is a fixed individual and aC is a new
individual in mi.

• for all concepts i :C /∈ Ω, î :C v ⊥ ∈ A and C v ⊥ ∈ Ai.

Limitations

The algorithm was originally designed to reason with a network of aligned ontologies, not with modules. This
leads to notable limitations:

• the content of the module must be empty or only contains subsumption axioms A v B with A and B
primitive;

• this module reasoning procedure cannot be used as an oracle for an imported module, which means
that there cannot be a chain of import longer than one.

Optimization

The algorithm, as it is described here, will answer negatively if and only if it has tested all possible configu-
rations. So, every time a module is inconsistent, the reasoner must call all the oracles 2n times, where n is
the number of concepts in the alignment ontology. This situation is hardly acceptable in a practical reasoner.
However, optimizations can be carried out to improve this situation. In particular, backtrack algorithms can be
applied to this procedure. Indeed, for each concept C appearing in a mapping, it must be decided whether it
is empty or not. There are cases when it can be deduced that C is empty (resp. not empty). In this case, it
not necessary to test configurations where C is not empty (resp. empty). This can be visualized in Figure 6.1.

6.3.2 IDDL Reasoner API

The IDDL reasoner provides a basic interface to check consistency of an ontology module which consists
of a set of imported ontologies in OWL and mappings between them. The current IDDL reasoner uses
Pellet reasoner as local reasoner for checking consistency of an imported ontology from an ontology mod-
ule. The interface between the IDDL reasoner and local reasoners is designed so that any other reasoner,
e.g. FaCT++, Racer, Drago, etc., can easily replace Pellet reasoner. Additionally, the IDDL reasoner uses
Alignment API [Euz04] to manipulate correspondences during reasoning process.

In addition, the reasoner offers a possibility to get an explanation for an inconsistency of an IDDL system.
The method

ReasonerManager.isConsistent(Vector<URI> ontoUris, Vector<URI> alignUris, Semantics sem)

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 76 of 93 NeOn Integrated Project EU-IST-027595

allows users to call the reasoner with the following three parameters :

1. ontoUris : URIs of OWL ontologies

2. alignUris : URIs of alignments

3. sem : indicates the semantics of the system. The type Semantics takes two possible values :

(a) IDDL : represents the IDDL semantics in the context where alignments are obtained from match-
ing ontologies which are not necessary imported ontologies of an ontology given.

(b) DL : represents the semantics of Description Logics which interprets all ontologies and align-
ments of the system into a unique interpretation domain. Consequently, consistency of the sys-
tem is equivalent to that of the union of OWL ontologies and alignments.

The method

IDDLReasoner.isConsistent ()

will be invoked from

ReasonerManager.isConsistent(Vector<URI> ontoUris, Vector<URI> alignUris, Semantics sem)

to check consistency of an IDDL system which has been loaded by the method

IDDLReasoner.loadIDDLSystem()

or

IDDLReasoner.loadMIDDLSystem()

To make an IDDL reasoner available to reason for a new IDDL system, the method

IDDLReasoner.unloadIDDLSystem()

has to be called.

6.3.3 Further work

The current version of the IDDL reasoner provides only explanations for inconsistencies which are caused by
correspondences propagated from mappings to imported ontologies. A future version of the IDDL reasoner
should take advantages of explanations from local reasoners to give more details about how propagated
correspondences impact on an imported ontology.

As mentioned at the beginning of the present section, the current version of the IDDL reasoner does not
allow disjointness correspondences to occur in alignments. This limitation prevents us from supporting axiom
entailment since it is equivalent to inconsistency of an IDDL system including disjointness correspondences.
For instance, the current IDDL reasoner does not know whether 〈O,A〉 |= i :C v j :D where O, A are the
sets of imported ontologies and mappings from an ontology module.

In a future version, we plan to extend the reasoner such that it takes into account only disjointness corre-
spondences translated from entailment but not those initially included in alignments. Allowing disjointness
correspondences in this controlled way may not lead to a complexity blow-up.

6.4 Integration with the NeOn Toolkit

In this section we describe the principle of the integration of the IDDL reasoner within the NeOn Toolkit. This
integration is performed by developing a plug-in, namely IDDL reasoner plug-in, which plays an interface
role between the IDDL reasoner and the NeOnToolkit plug-ins, e.g. the module API, Ontology Navigator,
Alignment Plugin, etc.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 77 of 93

Local Reasoners
(Pellet, FaCT, Drago)

IDDL Reasoner

Alignment API

Alignment Serveruses

uses

uses

NeOn Toolkit

IDDL Plugin Alignment Plugin

uses

Module Plugin

uses

uses

uses

Figure 6.2: IDDL reasoner plug-in and related components.

6.4.1 Principle of the integration

The IDDL reasoner API for ontology modules uses the module API to access to mappings and imported
ontologies of an ontology module. In other terms, the IDDL reasoner plug-in is developed such that it can
get access to the mappings and imported ontologies from an ontology module and pass them to the IDDL
reasoner with help of the IDDL reasoner API as described in Section 6.3.2.

More precisely, from the NeOn toolkit environment the IDDL reasoner plug-in gets URIs of the imported
ontologies and the mappings from an ontology module. In the most of cases where mappings are not
available from the ontology module, the plug-in can fetch available alignments or mappings from an alignment
server. This feature allows users to use alignments permanently stored on servers and select the most
suitable alignments for an intended purpose.

6.4.2 IDDL reasoner plug-in

Figure 6.2 shows relationships between the IDDL reasoner plug-in and the other components from the NeOn
Toolkit and the IDDL reasoner. The IDDL reasoner plug-in relies on the IDDL reasoner, and the core module
API which provides basic operations to manipulate ontology modules and mappings. By using the core
module API, the IDDL reasoner plug-in can get necessary inputs from an ontology module. In the case
where the mappings obtained from the ontology module in question are not appropriate, the plug-in can
connect to the Alignment Server [LBD+08] to fetch alignments available. For this purpose, the plug-in offers
to users an interface allowing to visualize and select alignments.

From a determined input, the IDDL reasoner plug-in can obtain an answer for consistency from the IDDL
reasoner. In the case where the answer is negative the plug-in can obtain an explanation indicating configu-
rations and/or correspondences which are responsible for that inconsistency.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 78 of 93 NeOn Integrated Project EU-IST-027595

6.5 Use Example

The answer time of the IDDL reasoner depends on the following elements which are taken into account in
the optimized algorithm design.

1. If there are more unsatisfiable or non-empty concepts occuring in correspondences, the answer time
is shorter;

2. If there are more equivalent concepts or properties occuring in correspondences, the reasoner answers
faster;

3. If ontology module is inconsistent, the reasoner has to check likely all configurations. Therefore, the
answer time would be long.

Geopolitics(1)
Woman(Cindy)
Region(Guyana)

Geography(2)
Country v Region
EuropeanRegion ≡ Region u ∃partOf .{Europe}
SouthAmericanRegion ≡ Region u∃partOf .{SouthAmerica}
EuropeanRegion v ¬SouthAmericanRegion
Trans(partOf)
Country(France)
partOf (France,Europe)

1
:R

egion
≡↔

2
:R

egion

1
:G

u
yan

a
∈↔

2
:∃

partO
f .{F

ran
ce}

1
:G

u
yan

a
∈↔

2
:S

ou
thA

m
erican

R
egion

Figure 6.3: An example of an ontology module with mappings.

In this Example 6.3, we have two imported ontologies, Geopolitics and Geography, with a mapping
between them. The axioms of the ontologies and mapping are expressed in a description logic and they can
be directly coded in OWL-DL. We consider the following cases:

1. If these imported ontologies are merged with the correspondences of the mapping, we obtain an OWL
ontology which is not consistent. The reason is that the mapping allows one to deduce that two classes
"EuropeanRegion" and "SouthAmericanRegion" are not disjoint, which contradicts the disjointness
axiom in Geography.

2. However, in the context of ontology module the IDDL reasoner can check consistency of the module
and answer that the module is consistent (Figure 6.4).

3. If we now add to the following mapping 1 :Guyana ∈↔ 2 :SouthAmericanRegion u EuropeanRegion ,
the IDDL reasoner answers that the module is no longer consistent. An explanation of the inconsis-
tency is shown in Figure 6.5.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 79 of 93

Figure 6.4: A consistent IDDL system.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 80 of 93 NeOn Integrated Project EU-IST-027595

Figure 6.5: An inconsistent IDDL system.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 81 of 93

Chapter 7

Reasoning with Temporarily Unavailable
Data Sources

The Semantic Web is envisioned to be a Web of Data [BL98]. As such, it integrates information from various
sources, may it be through rules, data replication or similar mechanisms.

When doing reasoning over such distributed data, availability of the data sources is usually assumed and data
is directly requested from these sources. However, in order to provide an increased level of resistance against
failures or in order to improve performance, caching of remote data may be employed during reasoning. In
such cases, however the cache needs to be kept up to date. In cases, when this is not possible, information
must be available, that the inferences drawn are based on stale information. Alternatively, some default truth
value could be assumed for unavailable information.

In this chapter we propose a framework for reasoning with such cached knowledge, which allows to give
additional information on the reliability of results to the user. In particular, we are able to tell whether a
statement’s truth value is inferred based on really accessible information, or whether it might change in the
future, when cached or default values are updated. The work presented here shares foundations with trust
based reasoning as presented in [QHS+09] and is a specialization of general trust based reasoning.

Dealing with cached information in relevant to most distributed reasoning mechanisms and as such orthog-
onal to the approaches presented in the previous chapters. particularly, KAONp2p locally integrated the
T-Boxes of the ontologies involved in a reasoning task. There, the formalism proposed in this chapter is
directly applicable to the T-Box reasoning.

The problem of reasoning in a distributed environment without reliability guarantees is highly relevant, be-
cause fault tolerance and reliable data integration is a main prerequisite for a distributed system like the
semantic web. The level of reliability of a piece of information can strongly influence further usability of de-
rived information. For this reason, our approach can be seen as a bridge between the rules, proof and trust
layers of the semantic web layercake.

The availability of multiple integration mechanisms for distributed resources makes formulating a generic
framework a non-trivial task. Moreover, classical two-valued logic fails to capture the ’unknown’ truth value
of unavailable information. In fact, many applications today rely on simple replication of all necessary data,
instead of more flexible mechanisms.

Our approach extends a very flexible basis of most logical frameworks, namely bilattices, which allow to
formalize many logics in a coherent way [HW05]. Hence, it is applicable to a broad range of logical languages.
We propose an extension FOUR− C to the FOUR bilattice.

We investigate support for connected and interlinked autonomous and distributed semantic repositories (for
RDF or OWL) — a basic idea behind the semantic web effort. These repositories exchange RDF and OWL
data statically (e.g. by copying whole RDF graphs, as in the caching scenario) or dynamically using views or
rules.

Our approach is based on assigning different trust levels to cached and local information. Information about

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 82 of 93 NeOn Integrated Project EU-IST-027595

trust levels is aggregated and propagated to inferred axioms during the reasoning process.

7.1 FOUR

Most logic programming paradigms, including classical logic programming, stable model and well founded
semantics, and fuzzy logics can be formalized based on bilattices of truth values and fixpoints of a direct
consequence operator on such a bilattice. Therefore, if we build our extension into this foundational layer, it
will directly be available in many different formalisms.

A logical bilattice [Gin92] is a set of truth values, on which two partial orders are defined, which we call the
truth order ≤t and the knowledge order ≤k. Both ≤t and ≤k are complete lattices, i.e. they have a maximal
and a minimal element and every two elements have exactly one supremum and infimum.

In logical bilattices, the operators ∨ and ∧ are defined as supremum and infimum wrt. ≤t. Analogously join
(⊕) and meet (⊗) are defined as supremum and infimum wrt. ≤k. As a result, we have multiple distributive
and commutative laws, which all hold. Negation (¬) simply is an inversion of the truth order. Hence, we can
also define material implication (a→ b = ¬a ∨ b) as usual.

The smallest non trivial logical bilattice is FOUR, shown in figure ??. In addition to the truth values t and f ,
FOUR includes > and ⊥. ⊥ means "unknown", i.e. a fact is neither true or false. > means "overspecified"
or "inconsistent", i.e. a fact is both true and false.

In traditional, two valued logic programming without negation, only t and f would be allowed as truth values.
In contrast, e.g. the stable model semantics, allows to use > and ⊥. In this case, multiple stable models are
possible. For example, we might have a program with three clauses:

man(bob)← person(bob),¬woman(bob).
woman(bob)← person(bob),¬man(bob).
person(bob).
Using default f , we might infer both man(bob) ∧ ¬woman(bob) and
woman(bob) ∧ ¬man(bob). While in two valued logics we would not be able find a model, in four
values, we could assign truth values t ⊕ f = > and t ⊗ f = ⊥. In fact, both would be allowed under the
stable model semantics, resulting in multiple models for a single program.

The well founded semantics distinguishes one of these models — the minimal one, which is guaranteed
to always exist and only uses t, f , and ⊥. In a similar way, other formalisms can be expressed in this
framework as well. Particularly, we can also formalize open world based reasoning, using ⊥ instead of f as
default value. For a detailed introduction of logical bilattices, we refer the reader to the very good overview in
[Fit02].

7.2 FOUR− C

To apply our work to a variety of different logical formalisms, we directly extend FOUR as the theoretical
basis.

To distinguish between certain information, which is local or currently available online, and cached information
(or information derived from cached information), we extend the set of possible truth values: For information,
of which we know the actual truth value we use the truth values {tk, fk,>k,⊥k}. For cached information,
we use a different set: {tc, fc,>c,⊥c}. The basic idea of the extension is that cached information is always
potentially outdated. For example a cached false value might actually be true. Therefore, we assume cached
information to be always a bit less false or true than certain information — as the truth value might have
changed.

In our scenario, let us assume Project1’s web site is currently inaccessible. In a normal closed world setting,
we would assume published(report1, _) to be f , hence also timelyDeliverable(report1), by rule (4).
Changing our default to ⊥ – unknown – would also not help us determine, whether Project1’s web site is just

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 83 of 93

cc

kk

ckkc

kk

cc

ckkc

fkk

fck

fcc

fkc

tkk

tkc

tcc

tck

truth

knowledge

trust level k

trust
level c

Figure 7.1: FOUR− C

updated slowly, or whether the available information might be inaccurate. InFOUR− C, we assign fc (or⊥c
in an open world setting) to published(report1, _). We can then conclude from (1-4) and the unavailability
of (5) that timelyDeliverable(report1) is tk ∧ fc = fc, and hence possibly outdated. Therefore, Oscar
will simply update his report later, when all relevant data sources are available again, instead of sending a
reminder by mistake. Analogously, if we run into an inconsistency, we want to be aware, if this inconsistency
could potentially be resolved by updating the cache. Summarizing, our operators should act as in FOUR,
if we only compare truth values on the same trust level. If we compare values from multiple trust levels, we
would like to come up with analogous truth values as in the four valued case, but on the trust level, which is
the lowest of the compared values.

Ginsberg [Gin92] describes how we can obtain a logical bilattice: Given two distributive lattices L1 and L2,
create a bilattice L, where the nodes have values from L1 × L2, such that the following orders hold:

• 〈a, b〉 ≤k 〈x, y〉 iff a ≤L1 x ∧ b ≤L2 y and

• 〈a, b〉 ≤t 〈x, y〉 iff a ≤L1 x ∧ y ≤L2 b

If L1 and L2 are infinitely distributive — that means distributive and commutative laws hold for infinite combi-
nations of the lattice based operators from section 7.1 — then L will be as well.

We use L1 = L2 = tk > tc > fc > fk as input lattices, resulting from
our basic idea that cached values are a bit less true and false. As L1 and L2 are to-
tally ordered sets, they are complete lattices and hence infinitely distributive. The resulting
FOUR− C bilattice shown in fig. 7.1. In fig. 7.1 we label nodes of the form 〈fx, ty〉 with >xy, 〈tx, fy〉
with ⊥xy, 〈fx, fy〉 with fxy and 〈tx, ty〉 with txy.

The artificial truth values fkc, fck, tkc, tck, >kc,>ck,⊥kc and ⊥ck are only used for reasoning purposes.
Users will only be interested in trust levels, which are equivalence classes of truth values: Given an order of
k > c, the trust level of a truth value is the minimal element in its subscript. For example the trust level of
tc,⊥kc and >ck is c. In fig. 7.1, these equivalence classes are separated by dotted lines. As we only have
two trust levels here, there are exactly two equivalence classes - one for currently accessible (truth values
tkk, fkk,>kk,⊥kk) and one for cached information (truth values tcc, fcc,>cc,⊥cc) and information derived
from cached information (truth values tkc, fkc,>kc,⊥kc, tck, fck,>ck,⊥ck).

Obviously, FOUR− C meets our requirements from the beginning of this section: We have two sub-
bilattices isomorphic to FOUR, one on each trust level. Additionally, we always come up with truth values
on the right trust level, e.g. fkk ⊕ tcc = >kc, which is on trust level c and >kk ∧>cc = >ck, which is on trust

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 84 of 93 NeOn Integrated Project EU-IST-027595

level c and correctly reflects the fact that the result may be inaccurate in case >cc needs to be corrected to
some fxx.

In the caching scenario, we can assume a default truth value of ⊥ or f (depending on whether we do open
or closed world reasoning) to all statements, where the actual truth value can not be determined at the
moment. However, some more information may be available for example due to caching, statistics or similar.
Using FOUR− C, we can still do inferencing in the presence of such unreliable sources. Moreover, a
user or application can determine, whether a piece of information is completely reliable, or if more accurate
information may become available.

In [Sch08] we describe, how the stable and well founded semantics for logic programs, and for Semantic Web
rules based on Networked Graphs [SS08a] can be extended towards reasoning with unavailable data sources
based of FOUR− C. Here, we briefly sketch the extension of OWL 2. As reasoning with unavailable data
sources is a specialization of trust based reasoning described in [QHS+09], we refer the reader to [SS08a]
and [QHS+09] for a detailed specification.

7.3 Extension towards OWL

In this section we extend SROIQ, the description logic underlying the proposed OWL2 [GM08], to
SROIQ− T evaluated on a logical bilattice. The extension towards logical bilattices works analogously
to the extension of SHOIN towards a fuzzy logic as proposed in [Str06]. SROIQ− T is even more gen-
eral than needed here, as it allows to use any logical bilattice as discussed in [QHS+09]. For reasoning with
cached knowledge, we use FOUR− C as the underlying bilattice.

Definition 46 A vocabulary V = (NC , NP , NI) is a triple where

• NC is a set of OWL classes,

• NP is a set of properties and

• NI is a set of individuals.

NC , NP , NI need not be disjoint.

A first generalization is that interpretations assign truth values from any given bilattice. In contrast, SROIQ
is defined via set membership of (tuples of) individuals in classes (properties) and uses two truth values only.

Definition 47 (Interpretation) Given a vocabulary V an interpretation I = (∆I ,L, ·IC , ·IP , ·Ii) is a 5-tuple
where

• ∆I is a nonempty set called the object domain;

• L is a logical bilattice and Λ is the set of truth values in L

• ·IC is the class interpretation function, which assigns to each OWL class
A ∈ NC a function: AIC : ∆I → Λ;

• ·IP is the property interpretation function, which assigns to each property
R ∈ NP a function RIP : ∆I ×∆I → Λ;

• ·Ii is the individual interpretation function, which assigns to each individual a ∈ NI an element aIi

from ∆I .

I is called a complete interpretation, if the domain of every class is ∆I and the domain of every property is
∆I ×∆I .

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 85 of 93

This generalization allows to assign one of multiple truth values from a logical bilattice, instead of only true.

The second generalization over SROIQ is the replacement of all quantifiers over set memberships with
conjunctions and disjunctions over Λ. We extend the class interpretation function ·IC to descriptions as
shown in table. 7.1. The satisfaction of axioms is defined analogously and listed in [QHS+09] in detail.

>I(x) = >yy,where y is the information source, defining>I(x)
⊥I(x) = ⊥yy,where y is the information source, defining⊥I(x)

(C1 u C2)I(x) = CI1 (x)∧̇CI2 (x)
(C1 t C2)I(x) = CI1 (x)∨̇CI2 (x)

(¬C)I(x) = ¬̇CI(x)
(S−)I(x, y) = SI(y, x)

(∀R.C)I(x) =
∧̇

y∈∆I
RI(x, y)→̇CI(y)

(∃R.C)I(x) =
∨̇

y∈∆I
RI(x, y)∧̇CI(y)

(∃R.Self)I(x) = RI(x, x)

(≥ nS)I(x) =
∨̇
{y1,...,ym}⊆∆I ,m≥n

∧̇n

i=1
SI(x, yi)

(≤ nS)I(x) = ¬̇
∨̇
{y1,...,yn+1}⊆∆I

∧̇n+1

i=1
SI(x, yi)

{a1, ..., an}I(x) =
∨̇n

i=1
aIi = x

Table 7.1: Extended Class Interpretation Function

Satisfiability in SROIQ− T is a bit unusual, because when using a logical bilattice we can always come up
with interpretations satisfying all axioms by assigning > and ⊥. Therefore, we define satisfiability wrt. a truth
value. As an illustration, remember that in description logics, membership of an instance in a class is crisp,
i.e. it is a member or not. Hence, classes are usually modeled as sets and set membership corresponds
to a truth value of true and the default is false. Here, in contrast, we can assign any truth value from the
bilattice. Hence, such a simple modeling is no longer possible and we need a function instead of a set to
model classes.

Definition 48 (Satisfiability) We say an axiom E is u-satisfiable in an ontology O wrt. a bilattice L, if
there exists a complete interpretation I of O wrt. L, which assigns a truth value val(E, I) to E, such that
val(E, I) ≥k u.

We say an ontology O is u-satisfiable, if there exist a complete interpretation I, which u-satisfies all axioms
in O and for each class C we have |{a|〈a, v〉 ∈ C ∧ v ≥t u}| > 0, that means no class is empty.

u represents the reliability of an infered result: If an axiom is k satisfiable, it can be inferred from available
axioms. On the other hand, a c satisfiable axiom is inferred from axioms, of which some are temporarily
unavailable. Hence, this inferred knowledge may be erroneous.

Finally, we define entailment:

Definition 49 (Entailment) O entails a SROIQ− C ontology O′ (O � O′), if every model of O is also a
model of O′. O and O′ are equivalent if O entails O′ and O′ entails O.

The following theorem shows that we have indeed defined a strict extension of SROIQ:

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 86 of 93 NeOn Integrated Project EU-IST-027595

Theorem 7 If FOUR is used as logical bilattice, SROIQ− T is isomorphic to SROIQ.

7.4 Related Work

Relevant related work comes from the fields of semantic caching, multi-valued logics — particularly based
on logical bi-lattices — from belief revision and trust. The following works are closely related:

The term Semantic Caching refers to the caching of semantic data. Examples are such diverse topics as
caching results of semantic web service discovery [SHH07], caching of ontologies [B. 06] and caching to
improve the performance of query engines [KKM06]. These approaches have in common, that they discuss
how to best do caching of semantic data. In this chapter, we describe which additional information about the
reliability of knowledge we can infer, given a heterogeneous infrastructure containing semantic caches.

Much work has been done about basing logical formalisms on bilattices (cf. [Fit02], [HW05]). Most of these
works, however propose a certain logic by manually designing a suitable bilattice, or discuss how a particular
logic can be formalized using a bilattice. In contrast to these works, we do not propose a fixed bilattice
or logic. Instead, we automatically derive logical bilattices for trust based reasoning. Hence, we propose
a whole family of logics, which can automatically be tailored to the problem at hand. We instantiate this
framework for reasoning with cached knowledge.

7.5 Conclusion

We have proposed an extension to the logical bilattice FOUR, called FOUR− C, which allows to reason
with temporarily unavailable data. As bilattices are a basis for various logical formalisms, this allows to extend
many languages with trust based reasoning.

Our extension is applicable in both, open and closed world reasoning, in particular for rules and the descrip-
tion logic SROIQ. We will investigate the complexity of trust based reasoning with description logics and
plan an implementation, extending existing reasoning engines.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 87 of 93

Chapter 8

Discussion

8.1 Summary

During the last decade the semantic web has been constantly evolving coming to some extent closer to the
semantic web vision. A number of W3C recommendations are now available, while the OWL recommenda-
tion has very recently been proceeded by the extended OWL 2 recommendation. On the other hand, more
and more applications using semantic web standards (mainly RDF/RDFS) are emerging, especially around
the areas of semantic search engines, travel planning applications, electronic commerce and knowledge
management, while the semantic web community is actively pushing towards this direction through a number
of initiatives, like the Billion Triple Challenge.

All these steps point to a relative maturity of the semantic web field and a big change on the impact of
the semantic web technologies on the application-level. However, as long as the issue of scalability to
very large schema and (mainly) data volumes is unresolved, the practical feasibility of a complete or even
partial fulfilment of the semantic web vision cannot be guaranteed. It is thus sine qua non that the research
community focuses on the problem of data distribution and distributed reasoning and comes up with novel
ideas in the direction of system scalability. This is straightly analogous to the problems faced and to a large
extent resolved by the database community in the previous decades.

In this deliverable, we have attempted to attack various problems that arise when dealing with distributed,
networked ontologies. More concretely:

• Chapter 1 discussed the general background and motivation of reasoning and ontology distribution
and presented the main dimensions of interest in distributed reasoning.

• Chapter 2 provided use cases of reasoning over distributed networked ontologies.

• Chapter 3 provided the state of the art in reasoning with distributed data - distributed reasoning.

• Chapter 4 described the metamodel for mapping support in OWL.

• Chapter 5 looked into distributed reasoning with E-Connections in the context of the FOA ontology.

• Chapter 6 examined the approach proposed at the [Zim07] regarding reasoning with integrated De-
scription Logics.

• Chapter 7 dealt with reasoning with temporarily unavailable data sources.

8.2 Challenges

The discussion in this deliverable reveals a certain level of realization in the semantic web community of the
importance that distribution in reasoning procedures will play in coming years and provide different solutions

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 88 of 93 NeOn Integrated Project EU-IST-027595

to the distribution problem. Nevertheless, the field is still not very mature and a number of points for future
work have to be considered:

• Both schema and data distribution. There are, for example, techniques like DDLs that define for-
malisms for both TBox and ABox distribution (by providing the ability to define relationships between
individuals residing on different nodes), but present practical algorithms only for the case of TBoxes.
While it is true that if one focuses only on inference tasks as concept subsumption then one does not
need to take into account the ABoxes, in the general case and in most practical applications it would
be necessary to consider distributed data all over the system which could then be used for query an-
swering. We also note that an exception to this is the approach of OWL-DL mappings that allows for
ABoxes, since it is based on the paradigm of disjunctive Datalog.

• Enrich existing techniques. All approaches present a framework that allows for distributed reasoning
and/or reasoning with distributed data, but there is still room for further extensions/enrichments, so that
they can be used in even more general settings, thus increase their applicability. For example, DDLs
currently provide an algorithm for bridge rules only between concepts, that could in future work be
extended to the case of bridge rules between roles. General directions for enhancement could include
allowing for more expressive representation languages and more expressive relationships between
different nodes or, in some cases, restricting the current framework, so as to obtain more convenient
complexity results.

• Look into the pragmatics of distributed reasoning, especially for very large data volumes. Even the re-
quirements from distributed reasoning when dealing with very big ABoxes is not something very clear
in the semantic web community. For very large scales one can argue that the ability for sound and
complete reasoning should give place to the ability to receive back only the fraction of the full answer
set that is most relevant according to a list of criteria. This is still a very controversial point, since it
somehow distorts the ideal picture of reasoning that several people support. Nevertheless, approxi-
mate reasoning mechanisms could provide another useful direction for very large ABox volumes.

• Clear out which approaches are better suited to different applications. In the semantic web universe
it is pointless to seek for only one technique that encompasses every desirable feature and provides
a solution to all applications. Contrary to that no single method can currently be considered as a
panacea. It would instead make sense to look into the pragmatics of the different approaches and look
for use cases for each of them. Better understanding the pragmatics could then provide a framework
for their comparative evaluation, the discovery of their relative strengths and weaknesses and the
selection of the most suitable approach in the context of a given application.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 89 of 93

Bibliography

[ACG+06] Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine Rousset, and Laurent
Simon. Distributed reasoning in a peer-to-peer setting: Application to the semantic web. J. Artif.
Intell. Res. (JAIR), 25:269–314, 2006.

[B. 06] B. Liang et al. Semantic Similarity Based Ontology Cache. In APWeb, 2006.

[BBL05a] F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope. LTCS-Report LTCS-05-01, Chair for
Automata Theory, Institute for Theoretical Computer Science, Dresden University of Technology,
Germany, 2005. See http://lat.inf.tu-dresden.de/research/reports.html.

[BBL05b] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el envelope. In IJCAI, pages
364–369, 2005.

[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el envelope further. In Kendall
Clark and Peter F. Patel-Schneider, editors, In Proceedings of the OWLED 2008 DC Workshop
on OWL: Experiences and Directions, 2008.

[BCH] Jie Bao, Doina Caragea, and Vasant G Honavar. Towards collaborative environments for ontol-
ogy construction and sharing.

[BCH06a] Jie Bao, Doina Caragea, and Vasant Honavar. Modular ontologies - a formal investigation of
semantics and expressivity. In ASWC, pages 616–631, 2006.

[BCH06b] Jie Bao, Doina Caragea, and Vasant Honavar. On the semantics of linking and importing in
modular ontologies. In International Semantic Web Conference, pages 72–86, 2006.

[BCH06c] Jie Bao, Doina Caragea, and Vasant Honavar. Package-based description logics - preliminary
results. In International Semantic Web Conference, pages 967–969, 2006.

[BCH06d] Jie Bao, Doina Caragea, and Vasant Honavar. A tableau-based federated reasoning algorithm
for modular ontologies. In Web Intelligence, pages 404–410, 2006.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[BGvH+03] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini, and Heiner Stucken-
schmidt. C-owl: Contextualizing ontologies. In International Semantic Web Conference, pages
164–179, 2003.

[BL98] Tim Berners-Lee. Semantic Web Road Map. http://www.w3.org/DesignIssues/Semantic.html
[2008-05-12], 1998.

[BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative analysis of method-
ologies for database schema integration. ACM Comput. Surv., 18(4):323–364, 1986.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 90 of 93 NeOn Integrated Project EU-IST-027595

[BLSW00] Franz Baader, Carsten Lutz, Holger Sturm, and Frank Wolter. Fusions of description logics. In
Description Logics, pages 21–30, 2000.

[BLSW02] Franz Baader, Carsten Lutz, Holger Sturm, and Frank Wolter. Fusions of description logics and
abstract description systems. J. Artif. Intell. Res. (JAIR), 16:1–58, 2002.

[BS03] Alexander Borgida and Luciano Serafini. Distributed description logics: Assimilating information
from peer sources. J. Data Semantics, 1:153–184, 2003.

[CK07] Bernardo Cuenca Grau and Oliver Kutz. Modular ontology languages revisited. In SWeCKa
2007: Proc. of the IJCAI-2007 Workshop on Semantic Web for Collaborative Knowledge Acqui-
sition , Hyderabad, India, January 7, 2007, 2007.

[D1.] D1.1.2 networked ontology model. http://www.neon-project.org/web-content/
index.php?option=com_weblinks&view=category&id=17&Itemid=73.

[D7.a] D7.1.2 revised specifications of user requirements for the fisheries case study.
http://www.neon-project.org/web-content/images/Publications/
neon_2008_d7.1.2.pdf.

[D7.b] D7.2.2 revised and enhanced fisheries ontologies. http://www.neon-project.org/
web-content/images/Publications/neon_2007_d7.2.2.pdf.

[Euz04] Jérôme Euzenat. An API for ontology alignment. In Proc. 3rd International Semantic Web Con-
ference (ISWC), volume 3298 of Lecture notes in computer science, pages 698–712, Hiroshima
(JP), 2004.

[Fit02] Melvin Fitting. Fixpoint Semantics for Logic Programming - A Survey. Theoretical Computer
Science, 278(1-2), 2002.

[G. 07] G. Deschrijver et al. A Bilattice-based Framework for Handling Graded Truth and Imprecision.
Uncertainty, Fuzziness and Knowledge-Based Systems, 15(1), 2007.

[GGSS98] Chiara Ghidini, Chiara Ghidini, Luciano Serafini, and Luciano Serafini. Distributed first order
logics. In Frontiers Of Combining Systems 2, Studies in Logic and Computation, pages 121–
140. Research Studies Press, 1998.

[GHKS07] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A logical framework
for modularity of ontologies. In IJCAI, pages 298–303, 2007.

[GHW08] Jennifer Golbeck and Christian Halaschek-Wiener. Trust-Based Revision for Expressive Web
Syndication. Logic and Computation, to appear, 2008.

[Gin92] Matthew L. Ginsberg. Multivalued Logics: A Uniform Approach to Inference in Artificial Intelli-
gence. Computational Intelligence, 4(3), 1992.

[GM08] Bernardo Cuenca Grau and Boris Motik. OWL 2 Web Ontology Language: Model-Theoretic
Semantics. http://www.w3.org/TR/owl2-semantics/ [2008-05], 2008.

[Gol06] J. Golbeck. Trust on the World Wide Web: A Survey. Web Science, 1(2):131–197, 2006.

[GPS04a] Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Tableau algorithms for econnections of
description logics. Technical report, 2004.

[GPS04b] Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Working with multiple ontologies on the
semantic web. In International Semantic Web Conference, pages 620–634, 2004.

http://www.neon-project.org/web-content/index.php?option=com_weblinks&view=category&id=17&Itemid=73
http://www.neon-project.org/web-content/index.php?option=com_weblinks&view=category&id=17&Itemid=73
http://www.neon-project.org/web-content/images/Publications/neon_2008_d7.1.2.pdf
http://www.neon-project.org/web-content/images/Publications/neon_2008_d7.1.2.pdf
http://www.neon-project.org/web-content/images/Publications/neon_2007_d7.2.2.pdf
http://www.neon-project.org/web-content/images/Publications/neon_2007_d7.2.2.pdf

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 91 of 93

[GPS06] Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Combining owl ontologies using epsilon-
connections. J. Web Sem., 4(1):40–59, 2006.

[GR04] François Goasdoué and Marie-Christine Rousset. Answering queries using views: A krdb per-
spective for the semantic web. ACM Trans. Internet Techn., 4(3):255–288, 2004.

[GST07] Chiara Ghidini, Luciano Serafini, and Sergio Tessaris. On relating heterogeneous elements from
different ontologies. In CONTEXT, pages 234–247, 2007.

[HHR+06] Peter Haase, Pascal Hitzler, Sebastian Rudolph, Guilin Qi, Marko Grobelnik, Igor Mozetič, Dam-
jan Bojadžiev, Jerome Euzenat, Mathieu d’Aquin, Aldo Gangemi, and Carola Catenacci. Context
languages – state of the art. Deliverable D3.1.1, NeOn, 2006.

[HM05] Peter Haase and Boris Motik. A mapping system for the integration of owl-dl ontologies. In IHIS,
pages 9–16, 2005.

[HT02] Ian Horrocks and Sergio Tessaris. Querying the semantic web: A formal approach. In Interna-
tional Semantic Web Conference, pages 177–191, 2002.

[HW05] Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming semantics. TPLP,
5(1-2), 2005.

[HW07] Peter Haase and Yimin Wang. A decentralized infrastructure for query answering over distributed
ontologies. In SAC, pages 1351–1356, 2007.

[KG06] Yarden Katz and Jennifer Golbeck. Social Network-based Trust in Prioritized Default Logic. In
Proc. of AAAI, 2006.

[KKM06] Alissa Kaplunova, Atila Kaya, and Ralf Möller. Experiences with load balancing and caching for
semantic web applications. In Proc. of DL Workshop, 2006.

[KLWZ04] Oliver Kutz, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. E-connections of abstract
description systems. Artif. Intell., 156(1):1–73, 2004.

[Kos00] Donald Kossmann. The state of the art in distributed query processing. ACM Comput. Surv.,
32(4):422–469, 2000.

[KRH08] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Elp: Tractable rules for owl 2. In Sheth
et al. [SSD+08], pages 649–664.

[LBD+08] Chan Leduc, Jesus Barrasa, Jérôme David, Jérôme Euzenat, Raul Palma, Rosario Plaza, Marta
Sabou, and Boris Villazón-Terrazas. Matching ontologies for context. Deliverable D3.2.2, NeOn,
2008.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246, 2002.

[Mot06] Boris Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany, January 2006.

[MSS05] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with rules. J. Web Sem.,
3(1):41–60, 2005.

[P. 05] P. Haase et al. A Framework for Handling Inconsistency in Changing Ontologies. In Proc. of
ISWC, 2005.

[Pol07] Axel Polleres. From SPARQL to rules (and back). In Proc. of WWW, 2007.

2006–2009 © Copyright lies with the respective authors and their institutions.

Page 92 of 93 NeOn Integrated Project EU-IST-027595

[Prz90] Teodor C. Przymusinski. The Well-Founded Semantics Coincides with the Three-Valued Stable
Semantics. Fundamenta Informaticae, 13(4), 1990.

[QHS+09] Guilin Qi, Peter Haase, Simon Schenk, Steffen Stadtmüller, and Pascal Hitzler. D1.1.2 d1.2.4
inconsistency-tolerant reasoning with networked ontologies, 2009.

[R. 04] R. Gavriloaie et al. No Registration Needed: How to use Declarative Policies and Negotiation to
Access Sensitive Resources on the Semantic Web. In Proc. of ESWS, 2004.

[RAC+06] Marie-Christine Rousset, Philippe Adjiman, Philippe Chatalic, François Goasdoué, and Laurent
Simon. Somewhere in the semantic web. In SOFSEM, pages 84–99, 2006.

[SBT05] Luciano Serafini, Alexander Borgida, and Andrei Tamilin. Aspects of distributed and modular
ontology reasoning. In IJCAI, pages 570–575, 2005.

[Sch08] Simon Schenk. On the semantics of trust and caching in the semantic web. In Sheth et al.
[SSD+08], pages 533–549.

[SHH07] M. Stollberg, M. Hepp, and J Hoffmann. A Caching Mechanism for Semantic Web Service
Discovery. In Proc. of ISWC, 2007.

[SS08a] Simon Schenk and Steffen Staab. Networked Graphs: A Declarative Mechanism for SPARQL
Rules, SPARQL Views and RDF Data Integration on the Web. In Proc. of WWW, 2008.

[SS08b] Anne Schlicht and Heiner Stuckenschmidt. Distributed resolution for alc. In Description Logics,
2008.

[SSD+08] Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy W. Finin,
and Krishnaprasad Thirunarayan, editors. The Semantic Web - ISWC 2008, 7th International
Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Proceed-
ings, volume 5318 of Lecture Notes in Computer Science. Springer, 2008.

[SSST08] Bernhard Schueler, Sergej Sizov, Steffen Staab, and Duc Thanh Tran. Querying for meta knowl-
edge. In Proceedings of WWW, Bejing, China, 4 2008.

[SSW05] Luciano Serafini, Heiner Stuckenschmidt, and Holger Wache. A formal investigation of mapping
languages for terminological knowledge. In BNAIC, pages 379–380, 2005.

[ST05] Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning architecture for the semantic
web. In ESWC, pages 361–376, 2005.

[Str06] Umberto Straccia. A Fuzzy Description Logic for the Semantic Web. In Fuzzy Logic and the
Semantic Web. Elsevier, 2006.

[Stu06] Heiner Stuckenschmidt. Implementing modular ontologies with distributed description logics. In
WoMO, 2006.

[TF05] S. Tessaris and E. Franconi. Rules and Queries with Ontologies: a Unifying Logical Framework.
In I. Horrocks, U. Sattler, and F. Wolter, editors, Proceedings of the 2005 International Workshop
on Description Logics (DL2005), volume 147 of CEUR Workshop Proceedings, Edinburgh, Scot-
land, UK, July 2005. CEUR-WS.org.

[vRS91] Allen van Gelder, Kenneth Ross, and John S. Schlipf. The Well-Founded Semantics for General
Logic Programs. J. of the ACM, 38(3), 1991.

[ZD08] Antoine Zimmermann and Chan Le Duc. Reasoning with a network of aligned ontologies. In
RR, pages 43–57, 2008.

D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources Page 93 of 93

[ZE06] Antoine Zimmermann and Jérôme Euzenat. Three semantics for distributed systems and their
relations with alignment composition. In International Semantic Web Conference, pages 16–29,
2006.

[Zim07] Antoine Zimmermann. Integrated distributed description logics. In Description Logics, 2007.

[ZL08] Antoine Zimmermann and Chan Leduc. Reasoning on a Network of Aligned Ontologies. In
Thomas Eiter, Diego Calvanese, and Georg Lausen, editors, The Second International Con-
ference on Web Reasoning and Rules Systems, RR 2008, Karlsruhe, Germany, October 31st-
November 1st, 2008, Proceedings, October 2008. to appear.

2006–2009 © Copyright lies with the respective authors and their institutions.

	Introduction
	Background and Motivation
	Distributed Ontologies versus Distributed Reasoning
	Dimensions of Interest
	Overview of the Deliverable

	Use Cases of Reasoning over Distributed Networked Ontologies
	Introduction
	The FOA Case Study
	Objectives and User Requirements
	Reasoning over Distributed Networked Ontologies in the Context of WP7 Use Case

	The Pharma Case Study

	State of the Art in Reasoning with Distributed Data - Distributed Reasoning
	Introduction
	Related Work and Scope of the Chapter

	Distributed Description Logics
	Motivation
	Formalism
	Reasoning

	E-Connections
	Motivation
	Formalism
	Reasoning

	Distributed Terminological Knowledge under the Distributed First Order Logic Framework
	Formalism
	Associating Mapping Languages with the DFOL Formalism

	Package-Based Description Logics
	Motivation
	Formalism
	Reasoning

	A Decentralized Consequence Finding Algorithm in a Peer-To-Peer Setting
	Motivation
	Formalisms
	Reasoning

	A Mapping System for Query Answering in a Peer-To-Peer Setting
	Motivation
	Formalisms
	Reasoning

	Conclusion

	Metamodels for E-Connections and Mapping Formalisms
	The Extended OWL Metamodel for E-Connections
	Motivation of E-Connections
	Preliminaries
	The Link Property Entity
	Class Expressions
	Link Property Axioms
	Assertions

	Mapping Support (OWL)
	A Common MOF-based Metamodel Extension for OWL Ontology Mappings
	OCL Constraints for C-OWL
	OCL Constraints for DL-Safe Mappings

	An integration of EL++ with E-Connections for Safe Conjunctive Query Answering
	The Description Logic EL++
	E-Connections of EL++ Components
	Abstract Description Systems
	E-Connections in Abstract Description Systems

	Translating the E-Connection of EL++ Components into an Equivalent EL++ Knowledge Base
	DL-Safe Query Answering in the EL++ E-Connection
	Translating the E-Connection into Datalog
	DL-Safe Query Answering
	Algorithm for Conjunctive Query Answering

	Reasoning with Integrated Distributed Description Logics
	Motivation
	Formalism
	Semantics of the local content of modules
	Satisfied mapping
	Global interpretation of modules
	Consequences of a module

	The IDDL Reasoner for Ontology Modules
	Algorithm and Optimization
	IDDL Reasoner API
	Further work

	Integration with the NeOn Toolkit
	Principle of the integration
	IDDL reasoner plug-in

	Use Example

	Reasoning with Temporarily Unavailable Data Sources
	FOUR
	FOUR-C
	Extension towards OWL
	Related Work
	Conclusion

	Discussion
	Summary
	Challenges

	Bibliography

